
1 August 2000 Delphi Informant Magazine

August 2000, Volume 6, Number 8

Cover Art By: Arthur Dugoni

ON THE COVER
6 Distributed Delphi
The Gold Standard: MIDAS & COM — Bill Todd
Mr Todd demonstrates that a combination of MIDAS and COM servers
is the ideal system architecture for easily sharing a single database
connection among multiple EXEs and DLLs.

FEATURES
12 OP Basics
A Hierarchy of Forms — Rob Nibbelink
It’s been around since version 2, but many Delphi developers still aren’t
reaping the benefits of form inheritance. Mr Nibbelink shares his time-
honored techniques for building a reusable form hierarchy.

16 On Language
Recursion Excursion — Alexander Gofen
Mr Gofen offers a new component: an advanced calculator that allows
users to deal with sets of formulas and series that uses elegant recursion
techniques for parsing arithmetic expressions.

22 Greater Delphi
WAP Apps — Mike Riley
With wireless connections to portable, hand-held displays, Internet con-
nectivity has evolved to the next level. Mr Riley takes us to that next level
as well, with Delphi and Wireless Markup Language (WML).

26 In Development
Dependency Tracking — Michael L. Perry
Mr Perry explains dependency tracking, a powerful mechanism for keep-
ing a system up-to-date, contrasts it with other approaches (e.g. the
Observer Pattern), then provides a Delphi implementation.

33 The API Calls
An Open Dialog — Deepak Shenoy
With its new Places Bar and other changes, the Windows 2000 Open
dialog box definitely has a new look. Using a bit of inheritance, Mr
Shenoy demonstrates how to share that look with your users.

SPECIAL SUPPLEMENT
i The Dish on Kylix
It’s the biggest news from Borland since — well — Delphi. Check out
our early coverage of Delphi for Linux, with its first custom control, an
interview with Kylix R&D team leaders, and more

REVIEWS
36 Wise InstallMaster 8.0
 Product Review by Bill Todd

41 Delphi in a Nutshell
 Book Review by Ron Loewy

DEPARTMENTS
2 Delphi Tools
5 Newsline
43 Best Practices
44 File | New by Alan C. Moore, Ph.D.

THE DISH ON

2 August 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Red Hat Linux 6 Unleashed
David Pitts and Bill Ball, et al.

SAMS Publishing

ISBN: 0-672-31689-7
Price: US$39.99

(1,252 pages, CD-ROM)
Web Site: http://www.

samspublishing.com
Dart Announces PowerTCP WebServer Tool

 Dart Communications
announced PowerTCP Web-
Server Tool, an alternative for
Web application developers who
want to work within proven
application development envi-
ronments, such as Delphi,
C++Builder, Visual Basic, and
Visual C++. PowerTCP Web-
 Digital Metaphors Corp.
Server Tool is a software compo-
nent that developers can add to
their preferred development envi-
ronment, turning any application
into a stand-alone Web server.
 Using PowerTCP WebServer
Tool, Web applications can be
deployed as robust compiled
applications, and the server
address and port can be config-
ured so multiple Web applica-
tions can be installed on a single
NT server.

Dart Communications
Price: US$999
Phone: (315) 431-1024
Web Site: http://www.dart.com
Digital Metaphors Releases ReportBuilder 5
announced the release of Report-
Builder 5, the newest version
of the company’s reporting solu-
tion for Delphi. ReportBuilder
Enterprise Edition includes the
RAP (Report Application Pascal)
programming language.
 RAP enables developers to
include Object Pascal code and
Delphi-style event handlers
within reports, making report
layouts stand-alone entities that
can simply be loaded and exe-
cuted. It also allows end users to
create calculations using a drag-
and-drop interface.
 RAP affords developers the
ability to provide Delphi func-
tionality wrapped for users as
simple function calls that can
be easily generated via the RAP
Code Toolbox.
 ReportBuilder 5 offers various
enhancements, including RAP,
Crosstab reports, and a new
Label Template Wizard.

Digital Metaphors Corp.
Price: Standard, US$249; Professional,
US$495; and Enterprise, US$749.
Phone: (972) 931-1941
Web Site: http://www.digital-metaphors.com
 B&P Technologies released listin
B&P Releases APrintDirect 3.6
APrintDirect 3.6, a Windows
utility that allows you to manage
and create a catalog listing of
your files and folders.
 APrintDirect’s interface allows
for the selection of up to 11
property fields to include in each
listing. This leaves you in con-
trol of selecting the information
that you want included in your
customized listing. You can also
select by which field to sort the
generated listing.
 You can specify which types of
files to include or exclude from
the APrintDirect listing. You can
also view only files and folders of
particular attributes. For added
precision, APrintDirect includes
an output file mask. APrintDi-
rect also features the ability to
include the processing of nested
folders.
 APrintDirect’s output options
facilitate further management of
your listing. The APrintDirect
g can be saved as a text file,
printed to a compatible print,
or displayed on screen. You may
also copy text from the pre-
viewed listings to the Windows
Clipboard.
 Included in APrintDirect is the
ability to choose from three sep-
arate output styles. The tree view
depicts the structure as it origi-
nally appears. For a standard
listing of files, there is the list
view. The comma-separated style
can be used to import your list-
ing into many common spread-
sheet and database applications
for further formatting.

B&P Technologies
Price: US$14
Phone: (877) 353-7297
Web Site: http://www.bpsoftware.com

http://www.dart.com
http://www.digital-metaphors.com
http://www.bpsoftware.com
http://www.samspublishing.com

3 August 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Distributed Object Architectures
with CORBA
Henry Balen

Cambridge University Press/SIGS

ISBN: 0-521-65418-1
Price: US$39.95

(285 pages, CD-ROM)
Web Site: http://www.cup.org

or http://www.sigs.com
 HyperAct, Inc. announced support f
HyperAct Announces WebApp 2.5
the availability of WebApp 2.5,
the company’s RAD framework
for advanced Web server
application development using
Delphi. The new release offers
or Delphi 4 and 5.
 New features include file
upload, a Watchdog utility,
remote monitor configuration,
on-demand thread creation, sup-
port for non-cookies session rec-
 layout

UI; and a Web-
ognition, PSWebDBGrid (a grid
component), and stub applica-
tion conversation through COM
instead of shared memory.
 WebApp supports ISAPI,
NSAPI, WSAPI, CGI, and
WinCGI servers. It provides
routines and components that
facilitate easy Web program-
ming, such as HTML generation
components, data-aware compo-
nents, SMTP control for send-
ing e-mail, on-the-fly conversion
of bitmaps to GIF/JPEG, an ad-
management component, and
browser capabilities detection.

HyperAct, Inc.
Price: Standard (no source, includes one-
server license), US$295; Professional (with
source and two-server license), US$595;
additional server license, US$195.
Phone: (402) 891-8827
Web Site: http://www.hyperact.com
 Pitron Systems Ltd., in partner- and Record modes; rich
Pitron Systems Announces PSWebDBGrid 1.0
ship with HyperAct, Inc.,
announced the availability of
PSWebDBGrid 1.0, a compo-
nent that allows Delphi develop-
ers to create database grid appli-
cations. The new component
supports Delphi 4 and 5 and
its features include editable Grid
control using events at Table,
Row, and Column levels; server-
side column Validation functions;
extensibility using inheritance
and events; built-in buttons for
standard actions (Navigation,
Delete, Insert, etc.); customizable
buttons for developer actions;
automatic scroll support based on
sort order; and record tracking.

Pitron Systems Ltd./HyperAct, Inc.
Price: Standard, US$195; Professional,
US$495 (includes source code).
Phone: (402) 891-8827
Web Site: http://www.pitron.co.il/main.html
or http://www.hyperact.com
 M-Tech Mercury Information with one simple G
M-Tech Releases Version 4.2 of P-Synch
, e.g. Min-
Technology, Inc. announced
P-Synch 4.2, the latest version of
the company’s password synchro-
nization program.
 This latest version of the
password management solution
includes several new features,
including support for managing
passwords on LDAP servers,
enhancing the P-Synch facility
for changing and resetting pass-
words on directory servers; trans-
parent password synchronization
based on Netscape Directory
Server password changes; native
support for Novell GroupWise
mail domains, adding an admin-
istrative interface and eliminating
the need for scripting; native sup-
port for Lotus Domino server
passwords; a simplified mecha-
nism for Web-based password
synchronization, allowing users to
synchronize passwords by authen-
ticating with one password, and
then changing many passwords,
based module for enterprise-wide
username management, which
allows users to build a centralized
database that shows their various
login IDs on diverse systems.
M-Tech Mercury Information
Technology, Inc.
Price: Call for pricing information.
Phone: (403) 233-0740
Web Site: http://www.psynch.com
 Extended Systems, Inc. and Pen- port for Palm modems

Extended Systems Offers XTNDConnect RPM
Right! Corp. will launch XTND-
Connect RPM for MobileBuilder,
a programmable middleware for
developing native Windows and
wireless mobile applications.
Through the new XTNDConnect
RPM/MobileBuilder solution,
developers can create and execute
real-time, server-based processes
over a wireless/wired LAN and
Internet connection to Palm OS,
Windows, and soon Windows CE
handheld devices.
 Features in XTNDConnect
RPM include complete wireless
API support for TCP/IP data
networks, including CDPD,
GSM, CDMA, and others; sup-
strel, Omnisky, etc.; native real-
time server access to back-end
databases, including Advantage
Database Server, Oracle, Sybase,
DB2, and any ODBC- and OLE
DB-compliant database; straight-
forward stored procedures con-
cept to provide server-based data
to mobile handhelds; and the
ability to leverage existing Delphi
code to implement business logic
at the server level.

Extended Systems, Inc.
Price: Contact Extended Systems for pricing
information.
Phone: (800) 235-7576 xt 5030
Web Site: http://www.extendedsystems.com

http://www.hyperact.com
http://www.pitron.co.il/main.html
http://www.hyperact.com
http://www.psynch.com
http://www.extendedsystems.com
http://www.cup.org
http://www.sigs.com

4 August 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions
Developer Express Announces ExpressPrinting System

 Developer Express Inc.
announced the release of Express-
Printing System, a VCL compo-
nent library designed to bring the
advanced presentation features of
Developer Express products, such
as ExpressQuantumGrid, Quan-
tumTreeList, and other controls,
to the printed page.
 Via its Report Link technology,
ExpressPrinting System allows
developers to print and render the
r Access.
contents as well as the layout of
ExpressQuantumGrid,
ExpressQuantumTreeList, String
Grid, Draw Grid, List Box, and
Check List Box.
 Each of the components listed
above include many design-
and run-time customization
options to help developers and
their users control the appear-
ance of printed output. For
instance, if a developer is
rendering the ExpressQuan-
tumGrid component, he/she
can enable the printing of
Footers, Bands, AutoPreview
Pane, and more.
 ExpressPrinting System
includes an open architecture so
that you can add extensions to
print components from Borland
and other third-party vendors.

Developer Express Inc.
Price: US$179.99 (with full source code).
E-Mail: sales@devexpress.com
Web Site: http://www.devexpress.com
as native ADO XML-persisted
 XML Software Corp. released such as Excel o
XML Software Releases InterAccess 1.1
InterAccess 1.1, a product that
provides full Internet database
connectivity. Using InterAccess,
you can access any ODBC/-
OLE DB-compliant SQL data-
base via the Internet.
 InterAccess implements a
client/server architecture, much
like FTP, and uses an XML
protocol to provide complete
access to SQL databases that
have ODBC or OLE DB
drivers. InterAccess consists of
three components: InterAccess
Server, the
InterAccess client
COM DLL, and the
InterAccess Browser.
With InterAccess
Server and Browser,
you can perform any
SQL operations that
your ODBC/OLE
DB drivers provide.
Use the InterAccess
Browser if you only
want to view/update
tables and execute
SQL commands. You
can save any
retrieved data to a
file or copy/paste
into other programs,
 If you need programming
power for your in-house or
commercial applications, use
the InterAccess client COM
DLL to write your own Inter-
net-enabled database programs.
The COM DLL provides
COM objects and interfaces
ready to drop into your Visual
Basic, C++, or other RAD tool
programs. The COM object
model is similar to the Micro-
soft ADO object model.
 You can optionally receive data
Recordsets, which enables con-
struction of ADO disconnected
Recordsets.
 Using the InterAccess COM
DLL, you can write in-house
or commercial Internet database
applications. There’s no need to
design and develop your own
XML protocols.

XML Software Corp.
Price: Visit Web site for licensing information.
E-Mail: info@xmlsoft.com.au
Web Site: http://www.xmlsoft.com.au

http://www.devexpress.com
http://www.xmlsoft.com.au

5 August 2000 Delphi Informant Magazine

News

L I N E

August 2000
 Scotts Valley, CA — Troll Tech agreement, Kylix will include a po

Troll Tech and Inprise/Borland Collaborate on Linux GUI
and Inprise/Borland announced
a technology licensing agreement
covering Troll Tech’s Qt graphi-
cal user interface (GUI) applica-
tion framework. As a result of
the agreement, Inprise/Borland
can leverage Qt in its forthcom-
ing Delphi and C/C++ rapid
application development envi-
ronment for Linux, code-named
Kylix. Financial terms of the deal
were not disclosed.
 At the heart of the Kylix Proj-
ect, Inprise/Borland is develop-
ing a visual component library
(VCL) to speed and simplify
native Linux application devel-
opment. This agreement permits
Inprise/Borland usage of Qt to
implement the underlying GUI
layer of the Borland Linux VCL
for Kylix. As a result of this
license to develop GUI applica-
tions with the Qt-based VCL.
 Inprise/Borland recently made a
minority investment in Troll Tech.
 Qt is a cross-platform C++
application framework that
enables rapid building of GUI
applications. Qt is fully object-
oriented, extensible, and sup-
rts true component program-
ming. It is supported on a range
of platforms, including Win-
dows 95/98/NT/2000, Linux,
Solaris, HP-UX, IRIX, and AIX.
For more information, contact
Troll Tech by e-mail at
info@trolltech.com, or visit the
company’s Web site at http://
www.trolltech.com.
Bank of America Selects Inprise Application Server
for E-business Platform

 Scotts Valley, CA — Inprise/-
Borland announced that Bank
of America’s Global Corporate
Investment Bank (GCIB) has
chosen the Inprise Application
Server, which supports the J2EE
standard and combines the bene-
fits of EJB and CORBA, as a key
element in its e-commerce strat-
egy. Inprise Application Server
was chosen over seven other
competing application servers
after a three-month trial period.
Inprise Application Server will
enable GCIB to expand its pres-
ence on the Web and provides
the company with the technol-
ogy needed to support these and
other enterprise-strength Inter-
net business applications.
 Scotts Valley, CA — Inprise/- Inprise/Borland also
Inprise/Borland Releases New MIDAS XML Server
Borland announced the avail-
ability of Borland MIDAS 3,
middleware technology and
components for rapidly build-
ing Delphi and C++Builder
Internet applications.
 Now supporting XML and
Dynamic HTML, MIDAS 3
increases the scalability and
flexibility of large-scale Internet
applications.
announced modified MIDAS
licensing that will now allow
small- to medium-sized busi-
nesses to gain the same advan-
tages as large corporations as
they extend their businesses to
the Internet.
 With MIDAS 3, developers
can create and deploy appli-
cations that connect users to
critical business information
whenever and wherever they
need it. From e-commerce
implementations to customer
relationship management sys-
tems, users will benefit from
greater control over network
traffic, improved performance
for mobile environments, and
increased scalability.
 For more information on
MIDAS 3, please visit http://
www.inprise.com.
US$239.7 million, up from
 Scotts Valley, CA — Inprise/- same period last year. The
Inprise/Borland Announces First Quarter 2000 Results
anged since
Borland Corp. recently
announced financial results for
the first quarter of fiscal year
2000, which ended March 31,
2000.
 For the first quarter, revenues
were US$46.5 million, up from
US$43.4 million in the same
period a year ago.
 The company recorded a net
loss of (US$1.1) million in the
first quarter, or (US$0.02) loss
per share, compared to a net
loss of (US$25.6) million, or
(US$0.54) loss per share in the
first quarter of 1999.
 On an operating basis, the
company recorded a net loss
from operations of (US$2.3)
million in the first quarter of
fiscal 2000, which compares
with a net loss from operations
of (US$26.8) million in the
prior year’s loss included a
US$15.2 million one-time
charge for severance, restruc-
turing, and other compensa-
tion-related expenses.
 Cash, cash equivalents, and
short-term investments as of
March 31, 2000 were
US$197.7 million on Decem-
ber 31, 1999. The increase in
cash was due principally to the
sale of the Scotts Valley campus
in March of this year.
 For more information, visit
http://www.inprise.com.
 Scotts Valley, CA — Inprise/- said, “Much has ch

Inprise/Borland and Corel Terminate
Proposed Merger
Borland Corp. announced its
merger agreement with Corel
Corp. has been terminated by
mutual agreement of the two
companies without payment of
any termination fees.
 In addition, the reciprocal
stock option agreements have
also been terminated.
 Dale Fuller, Inprise/Borland
interim president and CEO
the merger was agreed to more
than three months ago, and our
board concluded that it would
be best to cancel the merger on
an amicable basis.”
 In January of 2000, Inprise/-
Borland and Corel entered into
a confidentiality agreement
that included a standard three-
year standstill covenant. That
agreement remains in effect.

http://www.trolltech.com
http://www.trolltech.com
http://www.inprise.com
http://www.inprise.com
http://www.inprise.com

6 August 2000 Delphi Informant Magazine

Distributed Delphi
MIDAS / COM / Delphi 5

By Bill Todd

Project Name Purpose

DemoDllServer Provides
DemoClient Contains
DemoOrders Contains

Figure 1: The demonstration MID
The Gold Standard,
MIDAS & COM
Part I: Building Modular Applications

Borland developed MIDAS (Multi-tier Distributed Applications Services Suite) for creat-
ing multi-tier distributed applications. MIDAS is also the best way to build any data-

base application, particularly large applications, even when you don’t need a distributed
application. Combining MIDAS with Microsoft’s Component Object Model (COM) lets
you build large, complex applications from multiple COM servers that share a common
database connection.
There are a number of benefits to using MIDAS
and COM together. Here are some of them:
1) Team development is easier to manage, because

each team member can work on a module that
can be compiled and tested independently.

2) Applications that consist of many modules,
such as an accounting system, are easier to
deploy, because you can deploy only those
modules the user needs.

3) All modules share a common database con-
nection.

4) Modules are easily sharable across applications,
regardless of the programming language used
to create them.

5) Supporting multiple databases is easier. Even if
you don’t need to support multiple databases
now, you can design your application so you
can change databases more easily in the future.

The first part of this two-article series covers build-
ing a simple application that demonstrates using
MIDAS and COM together. It also shows one
way to implement callbacks from a COM server to
its client. The second article will demonstrate two
other techniques for server callbacks, and discuss
deployment issues for this type of application.

To examine using MIDAS and COM to build a
modular application, I will create a very simple
example that consists of a MIDAS server and two
MIDAS clients. The first MIDAS client will be the
 Roles

a connection to the database. MIDAS Serve
 the Customer form. MIDAS Clien
 the Order form. MIDAS Clien

AS server and its two MIDAS clients.
application’s main form, and will display data from
the sample Customer and Order tables. This appli-
cation is an EXE. The second MIDAS client will
display data from the Order table, and is imple-
mented as an in-process Automation server.

The roles played by the three programs can be
confusing. To clarify which does what, the table
in Figure 1 shows each application, the roles they
play, and how they’re implemented (the MIDAS
server and two clients are available for download;
see end of article for details).

Building the MIDAS Server
The MIDAS server has only one unusual feature.
It’s implemented as a DLL, so it won’t display
a form, or show an icon on the task bar. Display-
ing the server on the task bar is acceptable for
a distributed system where no one normally sees
the screen of the machine that hosts the MIDAS
server. However, it’s not a good idea for an applica-
tion where the server and client will run on the
same PC, because the user may be confused by
the extra icon and may try to close the server. The
solution is to implement the MIDAS server as a
DLL so it has no user interface.

To create a MIDAS server as a DLL, select File | New
from the menu and choose the ActiveX page of the
Object Repository. Double-click the ActiveX Library
icon to create a new ActiveX library project. Because
Implemented As

r ActiveX Library DLL
t COM Client EXE
t COM Server ActiveX Library DLL

7 August 2000 Delphi Informant Magazine

Distributed Delphi

Figure 2: The remote data module.

Figure 3: The Customer form.

Figure 4: The Customer form’s data module.

Figure 5: Selecting customer records in the Find Customer
dialog box.
MIDAS uses COM to handle communications between the MIDAS
client and the MIDAS server, an ActiveX library is used to provide the
required COM support.

From this point on, the process is the same as creating a MIDAS
server that is an EXE. Select File | New, go to the Multitier page, and
add a Remote Data Module to the project. Figure 2 shows the remote
data module for the sample application.

This application is written in typical client/server style. When the
user opens the application, no data is displayed. Instead, the user
must enter some selection criteria that will fetch a reasonable number
of records. To implement this approach, the SQL statement for the

CustomerQry component is:

SELECT * FROM Customer
WHERE CustNo = -1

Because there’s no customer record whose customer number
is minus one, this allows the Customer ClientDataSet in the
DemoClient application to be opened immediately, without
displaying any data. A DataSetProvider (CustomerProv) and a
DataSource (CustomerSrc) are connected to the CustomerQry
component by setting their DataSet property to
CustomerQry. In the Options property of the DataSetPro-
vider, poAllowCommandText is set to True, so the client
application can change the SQL property of CustomerQry
to select different sets of customer records.

OrdersQry supplies the order records for the current cus-
tomer record. Its SQL property is set to:

SELECT * FROM Orders
WHERE (CustNo = :CustNo)

and its DataSource property is set to CustomerSrc so the :CustNo
parameter’s value will be supplied by the current record in CustomerQry.
This will cause the order records to be stored in the customer records
as a nested dataset.

The DemoOrders application allows the user to search the entire
Order table, and select an order by order number, or all of the orders
for a customer number. To provide access to all orders, a second
Query component (not linked to the CustomerQry), OrdersAllQry,
is needed. Again, the SQL statement is set to retrieve no records
by selecting all columns from Order where the order number is
minus one. The DataSetProvider for the OrdersAllQry also has its
poAllowCommandText option set to True.

Because this MIDAS server is a DLL, you can’t register it by running
it. Instead, choose Run | Register ActiveX Server from the Delphi menu
to compile and then register the MIDAS server.

In a typical three-tier distributed application, the MIDAS server not
only provides the connection to the database, it also provides business
rule enforcement and other services to its clients. However, in this
article we’re discussing a single application that consists of multiple
modules. All of the modules will be MIDAS clients using the same
MIDAS server, and both the clients and the server will run on the
same machine. Suppose you’re writing a vertical market application
using this architecture. If you need to support multiple databases, you
may want to limit the code in the MIDAS server to just that code
that is specific to a particular database, such as Oracle or Microsoft

Figure 6: The Order form.

Figure 7: The Order form’s data module.

Method Param Type

FindByOrderNo OrderNo Long
FindByCustNo CustNo Long
OpenOrdersForm
CloseOrders
FindCustomer
GetCustNo CustNo Variant

Figure 8: Add these corresponding methods to the
IOrderServer interface.

procedure TOrderServer.FindByOrderNo(OrderNo: Integer);
begin
 OrderDm.FindByOrderNo(OrderNo);
end;

procedure TOrderServer.FindByCustNo(CustNo: Integer);
begin
 OrderDm.FindByCustNo(CustNo);
end;

procedure TOrderServer.OpenOrdersForm;
begin
 OrderDm := TOrderDm.Create(nil);
 OrderForm := TOrderForm.Create(nil);
 OrderForm.Show;
end;

Figure 9: The FindByOrderNo, FindByCustNo, and
OpenOrdersForm methods.

Distributed Delphi
SQL Server, and keep all of the code that is common to all databases
in the client modules. This lets you maintain multiple MIDAS serv-
ers for multiple databases with no code replication.

Building the COM Client
Figure 3 shows the application’s main form. It consists of two
DBGrids and two DBNavigators. The top grid and navigator display
customer information, and the bottom grid and navigator display
order data. Figure 4 shows the data module for this application.

The data module contains a DCOMConnection component, two
ClientDataSets, and two DataSources. The DCOMConnection com-
ponent’s name is DemoConn, and its ServerName property is set to
DemoDllSrvr.DllDemoServer. The RemoteServer property of CustomerCds
is set to DemoConn, and its ProviderName property is set to
CustomerProv. The OrdersCds component’s DataSetField property
is set to CustomerCdsOrdersQry so it will derive its data from the
nested dataset in the CustomerCds records.

The Edit menu contains a Find item that displays the dialog box
shown in Figure 5. This lets the user select a customer record by
customer number. It also allows users to select all of the records
in a specified state using the FindCustomer method in the data
module named CustomerDm. If you’re interested in this code, you
may download the complete sample application.

On the main form, the File | Orders menu item lets the user open a
form that can be used to search for any order by customer number
or order number. The Orders grid is connected to a pop-up menu
component that offers the user two choices:
1) Show This Order will open the Order form and show the current

order record.
2) Show All Orders For This Customer will open the Order form, and

display all orders for the customer number contained in the
current order record in the grid.

Building the COM Server
Now the fun begins. The next step is to create the Order form, as well
as the methods the Customer form must use to open the Order form;
find the orders for a customer; and find a specific order by its order
number. However, the Order form is going to be in a separate applica-
tion, which is an Automation server, and the Customer form will call
the Order form’s methods through its interface using Automation.

To create the Order application, go to the ActiveX page in the Object
Repository and double-click ActiveX Library. Add a form and a data
module to the application. The finished form is shown in Figure 6
and the data module is shown in Figure 7.

The DCOMConnection component in Figure 7, OrdersConn, con-
nects to the MIDAS server, DemoDllSrvr.DllDemoServer, just as the
DCOMConnection component in the Customer data module did.
The RemoteServer property of OrdersCds is set to OrdersConn, and the
ProviderName is set to OrdersAllProv.

The next step is to turn this DLL into an Automation server.
Return to the ActiveX Page of the Object Repository, double-click
the Automation Object wizard, and enter OrdersServer for the
CoClass Name. Also, check the Generate Event support code checkbox.
When the Type Library editor appears, add the methods shown in
Figure 8 to the IOrderServer interface, then click the Refresh button.
If you want to see captions under the Type Library editor toolbar
buttons, right-click the toolbar.
8 August 2000 Delphi Informant Magazine
The code for the FindByOrderNo, FindByCustNo, and
OpenOrdersForm methods is straightforward (see Figure 9), and
found in the OrdersAuto unit.

The first two methods, FindByOrderNo and FindByCustNo, call the
methods with the same name in the Order form’s data module. The
implementation section of the Order form’s data module is shown

Distributed Delphi
in Figure 10. Both methods close the order’s ClientDataSet, assign a
new SQL statement to its CommandText property, and then re-open
the ClientDataSet. When the ClientDataSet is opened, the value of
CommandText is passed to the MIDAS server and assigned to the SQL
property of the OrdersAllQry component before the query is opened.
The Customer EXE program calls these methods to display a particular
order or orders for a specific customer in the Order form. The third
method, OpenOrdersForm, creates the data module (OrderDm) and the
OrdersForm, and shows the Order form. The Customer EXE program
calls this method to make the Order form visible.

The FindOrder method of the Order form’s data module is called from
the Edit menu of the Order form. It displays the FindOrdersForm
dialog box, which lets the user find one or more orders by order
number or customer number.

Calling Back to the COM Client
With the methods described so far, the COM client application that
displays the Customer form can call methods in the COM server to
open the Order form, and find orders by order number or customer
number. However, the COM server needs to be able to call back to
9 August 2000 Delphi Informant Magazine

implementation

uses FindOrderF;

{$R *.DFM}

{ Displays the Find Order dialog. Calls appropriate f ind
 method based on which edit box on the Find Order dialog
 has a value. }
procedure TOrderDm.FindOrder;
begin
 FindOrderForm := TFindOrderForm.Create(Self);
 try
 with FindOrderForm do begin
 ShowModal;
 if OrderNoEdit.Text <> '' then
 FindByOrderNo(StrToInt(OrderNoEdit.Text))
 else if CustNoEdit.Text <> '' then
 FindByCustNo(StrToInt(CustNoEdit.Text))
 else
 MessageDlg('You must enter an order number or ' +
 'customer number.', mtError, [mbOK], 0);
 end;
 finally
 FindOrderForm.Free;
 end;
end;

{ Finds an Order record given its OrderNo. }
procedure TOrderDm.FindByOrderNo(OrderNo: Integer);
begin
 with OrdersCds do begin
 Close;
 CommandText := 'SELECT * FROM Orders WHERE ' +
 '(OrderNo = ' + IntToStr(OrderNo) + ')';
 Open;
 end;
end;

{ Finds all Order records for the specif ied Customer. }
procedure TOrderDm.FindByCustNo(CustNo: Integer);
begin
 with OrdersCds do begin
 Close;
 CommandText := 'SELECT * FROM Orders WHERE ' +
 '(CustNo = ' + IntToStr(CustNo) + ')';
 Open;
 end;
end;

Figure 10: The OrdersDm methods.
the client for two reasons. First, when a user is viewing an order, the
user needs to be able to display the customer record for that order. Put
another way, the Order form must be able to tell the Customer form
to find a specific customer record and show itself. The second problem
is that the COM server application shows the Order form modelessly.
That means that the COM client has no way of knowing when it can
close the COM server. The only solution is that the COM server must
notify the COM client when the user closes the Order form.

There are three ways for the server to communicate with the client.
The first is to add an Automation object to the client application, so
the server can connect to the client and call methods of the Automa-
tion object’s interface. Doing this means that the application that
contains the Customer form is both a COM client of, and a COM
server to, the Order application DLL. Further, the Order’s DLL is
both a client of, and server to, the Customer application.

The second method involves creating a callback interface to the
COM client application. To do this, you must add an interface to the
client, and create an object that implements that interface. When the
COM client connects to the COM server, it must create an instance
of the callback object, then call a method of the COM server and pass
the interface reference, as a parameter, to the COM server. Using this
interface reference, the server can call methods on the client.

The third technique is to let the server fire events on the client
through the server’s dispinterface. This is the easiest to implement in
Delphi 5, thanks to wizards that do most of the work. Although this
technique has some limitations, it will suffice for many applications
— so we’ll examine it first.

The key to using callback events is to check the Generate Event

support code checkbox when adding the Automation object to the
COM server. This causes two interfaces to be added to the COM
server’s type library. We’ve already added methods to the first inter-
face, IOrderServer. The second interface is a dispatch interface
named IOrderServerEvents. It’s now time to open the Type Library
editor again, and add two methods to the IOrderServerEvents inter-
face. The first is named OnCloseOrders, and the second is named
OnFindCustomer. After adding the OnFindCustomer event, click the
Parameters tab, then click the Add button to add a new parameter.
Name the parameter CustNo, and leave its type set to Long.

The OnCloseOrders event will be fired when the user closes the
Order form to notify the COM client that it can close its con-
nection to the COM server. The OnFindCustomer event will fire
when the user selects View | Customer from the menu. This event
will notify the COM client that it should find and display the
customer record whose customer number matches the customer
number of the current order record.

The code in Figure 11 fires the events. CloseOrders and FindCustomer
are methods that were added to the IOrderServer interface earlier.
CloseOrders is called from the OnDestroy event handler of the Order
form. FindCustomer is called from the OnClick event handler of the
View | Customer menu item.

To call these methods, you must have a reference to the OrderServer
Automation object. To get this reference, two changes are made to the
OrdersAuto unit. First, a global variable, OrderServer, is added to the
interface section of the unit:

var
 OrderServer: TOrderServer;

10 August 2000 Delphi Informant Magazine

Distributed Delphi

procedure TOrderServer.CloseOrders;
begin
 FEvents.OnCloseOrders;
end;

procedure TOrderServer.FindCustomer;
begin
 FEvents.OnFindCustomer(
 OrderDm.OrdersCdsCustNo.AsInteger);
end;

Figure 11: Firing the dispinterface events.

procedure TOrderServer.Initialize;
begin
 inherited Initialize;
 FConnectionPoints := TConnectionPoints.Create(Self);
 if AutoFactory.EventTypeInfo <> nil then
 FConnectionPoint := FConnectionPoints.
 CreateConnectionPoint(AutoFactory.EventIID,
 ckSingle, EventConnect)
 else
 FConnectionPoint := nil;
 OrderServer := Self;
end;

Figure 12: The OrderServer reference variable is initialized.

Figure 13: The Import Type Library
dialog box.

procedure TCustomerForm.OrderServerCloseOrders(
 Sender: TObject);
begin
 OrderServer.Disconnect;
end;

procedure TCustomerForm.OrderServerFindCustomer(
 Sender: TObject; CustNo: Integer);
begin
 CustomerDm.FindByCustNo(CustNo);
 Show;
end;

Figure 14: The OnCloseOrders and OnFindCustomer
event handlers.

procedure TCustomerForm.Orders1Click(Sender: TObject);
begin
 OrderServer.Connect;
 OrderServer.OpenOrdersForm;
end;

procedure TCustomerForm.ShowThisOrder1Click(
 Sender: TObject);
begin
 with OrderServer do begin
 Connect;
 OpenOrdersForm;
 FindByOrderNo(CustomerDm.OrdersCds.FieldByName(
 'OrderNo').AsInteger);
 end;
end;

procedure TCustomerForm.ShowAllOrdersForThisCustomer1Click(
 Sender: TObject);
begin
 with OrderServer do begin
 Connect;
 OpenOrdersForm;
 FindByCustNo(CustomerDm.OrdersCds.FieldByName(
 'CustNo').AsInteger);
 end;
end;

Figure 15: The menu item event handlers.
Next, a line is added
to the TOrderServer
object’s Initialize
method to assign Self to
the OrderServer global
variable (see Figure 12).
The OrderServer vari-
able now provides a
reference to the
OrderServer Automa-
tion object, which can
be used to call its meth-
ods from the Order
form’s OnDestroy event
handler, the menu
item’s OnClick event
handler, or from any-
where else in the
DemoOrders applica-
tion. Note that if you
he IOrderServer inter-
just want to fire an event from a method in t

face, you can omit these two steps. We needed a reference to the
Automation object only because we needed to fire the events from
elsewhere in the application.

The last step is to implement the events in the COM client. With
the DemoClient project open in the IDE, select Project | Import

Type Library from the menu to display the Import Type Library
dialog box (see Figure 13). Select DemoOrders Library in the list
box and make sure that Generate Component Wrapper is checked.
This will create a component of type TOrderServer, and add it to
your Component palette.

When you click the Install button, you’ll be asked if you want to
install this component in a new package or an existing package.
You’ll probably find it more convenient to put all of the server
components for the project you’re working on in their own pack-
ages. Whatever you do, don’t install this component in one of the
existing Delphi component packages. Once you’ve selected a pack-
age, click OK, then Yes to the dialog box informing you that the
package will be built and installed. The component that is created
is a wrapper around the COM server, and can be used to connect
to the server and call its methods. The OrderServer component also
has an event for each event you added to the IOrderServerEvents
interface in the COM server.

Drop an instance of the TOrderServer component on the Customer
form, and name it OrderServer. Set its AutoConnect property to
False, so the connection to the COM server won’t be opened auto-
matically when the program starts. Switch to the Events page of the
Object Inspector and create event handlers for the OnCloseOrders
and OnFindCustomer events. The code for both event handlers is
shown in Figure 14.

All that remains is to implement the OnClick event handlers for the
File | Orders menu choice, and the Order grid’s pop-up menu.
The code for these event handlers is shown in Figure 15.

Conclusion
With Microsoft Office and the Windows user interface, Microsoft has
clearly demonstrated that large applications can be built from shared
COM servers. You can use the same technique in your applications
to make team development, maintenance, updates, and distribution

Distributed Delphi
easier. MIDAS is the ideal data access technology for this application
architecture, because it makes sharing a single database connection
among multiple EXEs and DLLs easy.

Next month, we’ll discuss two other techniques for server callbacks,
as well as deployment issues that may arise for these particular types
of applications. ∆

The files accompanying this article are available on the Delphi Infor-
mant Magazine Complete Works CD located in INFORM\00\AUG\
DI200008BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, including Delphi: A Developer’s Guide. He is a Contributing Editor
to Delphi Informant Magazine, and a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a member of Team Borland, a
nationally known trainer, and has taught Delphi programming classes across the
country and overseas. He can be reached at bill@dbginc.com.
11 August 2000 Delphi Informant Magazine

12 August 2000 Delphi Informant Magazi

OP Basics
Form Inheritance / OOP / RAD / Delphi 2-5

By Ron Nibbelink

Figure 1: T
 A Hierarchy of Forms
Save Development Time with Form Inheritance

There I sat — in a hurry and already tired. I didn’t want to build those four screens for
listing four kinds of support data for this application. These screens would supply the

pull-down lists for data-entry fields on various other tables. I wasn’t looking forward to
the work involved in building edit screens to go with each list either. Then I remembered
form inheritance.
n

Form inheritance allows programmers to build the
framework of a form that will be used repeatedly.
It’s an extension of Delphi’s TForm, and it signifi-
cantly speeds up the routine work of programming
a complete application.

The hierarchy of forms I use has evolved over time,
but the basic set has served me quite well for two
years. These forms have saved hundreds of hours of
development and debugging time, and have given
my applications a consistent look and feel. They
provide sharper-looking products, and reduce the
time it takes my users to learn my applications.

The Ancestor
The hierarchy starts with the TForm object supplied
with the VCL. I added a couple of panels to it to
make TfrmGenrForm (see Figure 1). I placed the
control buttons for the descendant forms along the
right side, so one panel, named pnlControls, is right-
aligned on the base form. I gave it a width that
accommodates the buttons I use on the descendant
forms. (The samples available for download use a
slightly modified TBitBtn, named TGenrBtn, which
is 92 pixels wide, so I set pnlControl ’s width to
112; see end of article for download details.) The
e

he first-generation form, TfrmGenrForm.
other panel is named pnlForm, and is aligned to the
remainder of the form’s client area.

Of course you can arrange the panels any way
you like, and you can even add company logos
or other special identifiers. By placing them in
an ancestor object, they can remain the same
throughout the application. The form object also
has certain properties set, which relieves me of
having to set them consistently each time I start
a new form.

I also added the stand-alone procedure
RunGenrForm. It takes a TfrmGenrForm as its
sole argument, so it can run any of its descendants
as well. It runs the form by calling its ShowModal
method, and then frees it from memory:

procedure RunGenrForm(frm: TfrmGenrForm);
begin
 with frm do begin
 ShowModal;
 Free
 end

end;

If the descendant form needs no specific input
from the calling routine, it can be called using
this procedure. The code for making such a call
is simple:

procedure TfrmMain.actShowListExecute(Sender:

 TObject);
begin
RunGenrForm(TfrmShowList.Create(Application))
end;

where actShowListExecute is a TAction method
within the calling form, and TfrmShowList is the
descendant form being created.

OP Basics

procedure TfrmGenrList.SetButtons;
var
 HasRecs : Boolean;
begin
 actAdd.Enabled := not IsReadOnly;
 actAdd.Visible := actAdd.Enabled;
 HasRecs := False;
 with grdDB do
 if Assigned (DataSource) then
 with DataSource do
 if Assigned (DataSet) then
 with DataSet do
 HasRecs := not BOF or not EOF;

 actEdit.Enabled := HasRecs;
 if IsReadOnly then
 actEdit.Caption := 'View'
 else
 actEdit.Caption := 'Edit';

 actDrop.Enabled := HasRecs and not IsReadOnly;
 actDrop.Visible := actAdd.Visible
end;
Before adding a descendant of any of these ancestor forms to a
project, it’s a good idea to add its ancestor(s). Also, because they’re
never instantiated, you have to be sure Delphi doesn’t set them up to
be auto-created. In Delphi, select Project | Options, and move the form
to the Available Forms list box.

The Generic List Display Screen
I like to build lists to display and maintain the support data
that’s used to supply the pull-down pick lists for data-entry fields
elsewhere in the application. For many such lists, the user interface
requirements are essentially the same: Users need ways to add, edit,
and delete records, as well as ways to exit the screen. By building
that common functionality into an ancestor form, the programmer
can concentrate on the unique parts of the application.

I created a form, TfrmGenrList, that includes a DBGrid compo-
nent for displaying data from a table (see Figure 2). When creating
a descendant form, add a uses statement that includes your data
module, specify the grid’s DataSource, and set up the columns.
Finally, add the specifics of adding, editing, and deleting records
by overriding the DoAdd, DoEdit, and DoDrop methods. The
remainder of the normal processing is done at the ancestor level.

TfrmGenrList has a TActionList component with actions for adding a
new record, and editing and deleting the current record. The form
provides several ways to access these actions. Most obvious are the
pop-up menu and the series of buttons on the pnlControls panel.
The grid has an OnDblClick event handler that also invokes the edit
action. The OnKeyDown event handler invokes the add action when
users press I, the edit action when users press R, and the
delete action when users press D:

procedure TfrmGenrList.grdDBKeyDown(Sender: TObject;
 var Key: Word; Shift: TShiftState);
begin
 case Key of
 VK_RETURN : actEditExecute(Sender);
 VK_INSERT : actAddExecute(Sender);
 VK_DELETE : actDropExecute(Sender);
 else
 Exit
 end;
 Key := 0
end;

The form also contains a method for enabling or disabling various
actions. For example, if there are no records in the underlying
database table, the SetButtons procedure disables the edit and drop
actions. If the programmer has set the IsReadOnly property to True,
13 August 2000 Delphi Informant Magazine

Figure 2: The TfrmGenrList form. The pnlControls buttons and
the pop-up menu items reference the TActionList items.
the add and drop actions are made invisible, and the edit action’s
caption is changed to “View” (see Figure 3).

Unless the table or query is already open, the form’s FormActivate
routine should activate it, and the FormClose method should close
it. Inheriting from TfrmGenrList requires one additional task: imple-
menting three methods for overriding the virtual abstract ones. The
descendant form’s DoAdd, DoEdit, and DoDrop routines actually
insert, edit, and delete the records.

The Generic Edit Screen
Most of my edit screens use many of the same features as my list
screens. The user may be modifying simple look-up data, complex
database records, system options from an .ini file or the registry, or
other information. In any case, I need an OK button to save the
changes, and a Cancel button to discard them. It’s also a helpful user
interface feature to provide a visual indicator to show whether the
data has been changed (see Figure 4).

Because there are several ways to exit the modal dialog box, I consoli-
dated the save/cancel confirmation questions in the FormCloseQuery
procedure (not shown). The OK button’s ModalResult property sets
the form’s ModalResult to mrOK. The Cancel button and the other
exit paths set it to mrCancel. Therefore, if ModalResult is mrOK, I give
Figure 3: Code for enabling or disabling various actions.

Figure 4: The TfrmGenrEdit form. The TSpeedButtons
in the pnlControls panel serve as a visual indicator of
whether the user has changed the data.

OP Basics
the user the option of saving or canceling. If ModalResult is mrCancel,
the user is asked whether to discard the changes. If the user cancels
the confirmation dialog box, I just set FormCloseQuery’s CanClose
parameter to False so the form stays open.

There are times on the edit form when I don’t want the user to
have to confirm whether to save or cancel changes. For example,
my date picker dialog box is based on TfrmGenrEdit. However,
date picking usually occurs as part of another function, and it
would be confusing to ask the user to save the date change.
Therefore, TfrmGenrEdit has a property named DoConfirm. The
default setting is True; the date picker sets it to False.

To use TfrmGenrEdit, create a new form that inherits from it, and add
data-entry controls as you would normally. For each such control, set its
OnChange or OnClick event handler to DataChanging. If you have other
processing to perform in one of these event handlers, just add the call
to DataChanging to your routine. This method enables TfrmGenrEdit’s
save and discard speed buttons to show that something has changed,
which, in turn, tells the form to confirm the exit process.
14 August 2000 Delphi Informant Magazine

procedure TfrmGenrPrnt.btnPrintClick(Sender: TObject);
begin
 btnClose.Enabled := False;
 btnPrint.Enabled := False;
 with gagProg do
 if HideGagProg then
 Visible := False
 else
 begin
 MaxValue := 100;
 Progress := 0;
 Visible := True
 end;
 btnCancel.Visible := True;
 FStopping := False;
 FStopped := False;
 Cursor := crHourglass;
 Application.ProcessMessages;
 try
 DoPrint;
 f nally
 Cursor := crDefault;
 btnCancel.Visible := False;
 gagProg.Visible := False;
 btnClose.Enabled := True;
 btnPrint.Enabled := True
 end
end;

i

Figure 6: The TfrmGenrPrnt.btnPrintClick procedure.

Figure 5: The TfrmGenrPrnt screen image. This form
can be used as a basis for controlling any process that
executes over a period of time.
Finally, the form implements two protected virtual routines: PostChanges
and CancelChanges. These routines are called by FormCloseQuery, and
by the save and discard speed buttons. They should be overridden to
store any changes the user has made, or to restore the original values. At
the end of your implementation of these two methods, be sure to call
inherited, so the save and discard speed buttons will be reset.

The Generic Print Screen
Most applications generate reports or perform other tasks that
take place over a period of time. The TfrmGenrPrnt form provides
the basic functionality to support such features (see Figure 5). It
supplies a Close button to exit the screen, and a Print button to run
the process. You can change the Print button’s caption and glyph
if you’re using the form for some other process, such as importing
or exporting data. TfrmGenrPrnt also has a progress gauge and a
Cancel button, both of which are hidden except when the process
is running.

To run a descendant form, the user selects options you have placed
on the pnlForm panel of the descendant form, and then presses the
Print button. The btnPrintClick event handler (see Figure 6) disables
the Print and Close buttons, and makes the progress gauge and Cancel
buttons visible. It then calls the DoPrint procedure. This routine is
declared as a virtual abstract method, so the descendant has to declare
and define an overriding DoPrint method.

The descendant’s DoPrint does the real work, typically in a loop. It
should first determine the number of iterations for the loop, then
set the progress gauge’s MaxValue property accordingly. At the end
of the iterations, the routine should increment the Progress property.
(For those processes that don’t lend themselves to the progress
gauge paradigm, the ancestor publishes a HideGagProg Boolean vari-
able. It defaults to False, but if the descendant sets it to True, the
btnPrintClick handler doesn’t display the gauge. The programmer
should then provide some other way to show users that something
is occurring.)

Part of DoPrint’s loop control should also check the ancestor’s Stopping
property. It’s initialized to False, but if the user clicks the Cancel
button, the event handler sets Stopping to True. The next time the
descendant checks the property, the ancestor displays a dialog box
asking whether to cancel the process. If not, Stopping is reset to False,
and the descendant’s loop continues.

To iterate through a TTable, a descendant form’s DoPrint method
might resemble Figure 7.
// Conf irm user's setting choices, open table(s), etc.
...
with tblXXXX do begin
 gagProg.MaxValue := RecordCount;
 First;
 while not EOF and not Stopping do begin
 // Process the record.
 ...
 with gagProg do
 Progress := Progress + 1;
 Next;
 end
end;
// Close the table(s), etc.
...

Figure 7: A form’s DoPrint method iterating through a TTable.

OP Basics
Once the descendant’s DoPrint routine finishes, the ancestor’s
btnPrintClick handler completes the process by hiding the progress
gauge and Cancel button, and re-enabling the Close and Print buttons.

Conclusion
In the two years since I started using this hierarchy of inherited
forms, I have saved literally hundreds of hours of programming time.
Also, my customers have found it easy to learn the applications and
to move from one application to another. This process has been well
worth the time it took to learn. In a nutshell, it allows true rapid
application development. ∆

The files accompanying this article are available on the Delphi Infor-
mant Magazine Complete Works CD located in INFORM\00\AUG\
DI200008RN.

Ron Nibbelink develops PC database applications for the Quality and Process
Improvement organization of the Boeing Commercial Airplane Group in Wichita,
KS. He has developed applications on a variety of platforms — in several
languages — since 1983.
15 August 2000 Delphi Informant Magazine

16 August 2000 Delphi Informant Magazine

On Language
Recursion / Postfix Notation Sequence / Expression Calculator

By Alexander Gofen

13.1 + 12.3
vol = 300
s = 13
height = vol/s
a = 10*(height
r = sqrt((a -
arcsin(a/r)
e=2.718281828
x=1
y=2
e^(-x^2-y^2)

Figure 1: Linea
Recursion Excursion
Building an Advanced Expression Calculator

The goal of this article is to introduce several procedures that perform parsing and
evaluation of complex arithmetic expressions with variables, parentheses, and func-

tions. We’re going to consider procedures capable of parsing and evaluating a formula or
a chain of formulas, represented by a string or string list. Thus, the users of your applica-
tion will be able to input various formulas and compute them within your application.
This computing may be performed either directly
in an interpretive (and rather slow) way, or by
“compiling” the formulas into a so-called postfix
representation, and then using it for massive com-
puting at a speed comparable to having the formu-
las hard-coded at design time and compiled. Natu-
rally, it also gives us an opportunity to analyze the
usefulness and elegance of recursion techniques for
parsing arithmetic expressions and evaluating their
postfix representations.

Finally, a new component — an advanced calcu-
lator — will be introduced that will allow users
to do some math while running your application.
This advanced calculator component will allow
users to deal with sets of formulas and series,
and is much more useful than the calculator that
comes with Windows.

Interpretive Evaluation
A procedure or function is recursive if it calls itself
within the body of its own declaration, either directly
or through other procedures. It’s a feature allowed in
 - 2)
2)^2 + a^2)

r Elaboration of Declarations.
Pascal and several other high-level languages. A trivial
example found everywhere is function n!:

if n = 1 then
 Factorial := 1
else
 Factorial := n*Factorial(n-1);

However, it’s usually recommended that you imple-
ment this function via an iterative loop. The recursive
form here is good only in that it exactly matches the
definition of Factorial, but in practice, each function
call requires a certain overhead; implementation of
multiple function calls would work less efficiently
than a simple iterative loop in this case. Nevertheless,
there are problems whose mathematical models are
recursive, and recursive algorithms for them are not
only the most natural, but the preferred solution.

One of these situations is an evaluation of an arbi-
trary arithmetic expression with parentheses, func-
tions, and variables in the standard mathematical
notation (+, -, *, / and ^ for power). We’re going
to deal with lists of such expressions, where each
line may be either any arithmetic expression, or an
equation in the form:

Variable = Expression

where Expression is an arithmetic expression contain-
ing either numbers or variables defined in earlier
lines. This is Linear Elaboration of Declarations
(LED) in ADA terminology — the chain of formu-
las where each variable first has to appear in the
left-hand part of an equation, before it’s used in the
right-hand part, as shown in Figure 1.

 | -
 <Term> | <TermOp><Term> | <Expression><TermOp><Term>
 /
ctor> | <Term><FactOp><Factor>
rimaryExpr> | < Factor >^<PrimaryExpr>
::= <unsigned number> | <variable> | <function call> | (<Expression>)

s-Naur Form (BNF).

procedure NextToken;
begin
 Tkn := '';
 if cur > len then
 Exit;
 if WorkStr[cur] in AlfaNum then
 { Returns a name or number. }
 while (cur <= len) and
 (WorkStr[cur] in AlfaNum) do begin
 AppendStr(Tkn, WorkStr[cur]);
 Inc(cur);
 end
 else { Returns an operation sign. }
 begin
 Tkn := WorkStr[cur];
 Inc(cur)
 end
end;

Figure 3: The NextToken procedure.

x := 1
y := 2
z := 3
f := sqrt(x*x + y*y + z*z)

Figure 4: Sample equations.

On Language
It may be represented by a variable of type TStrings, say via the
TMemo.Lines property. Let’s define a pair of overloaded functions:

function Evaluate(const ValStrings: TStrings):
 Boolean; overload;
function Evaluate(const str: string; out res: Extended;
 const ValStrings: TStrings = nil): Boolean; overload;
 { Optional list of declarations. }

These functions will cover the following three situations:
1) The input is purely in TStrings type, and represents any list of

expressions obeying the principle of LED — the first version of
the function.

2) The input is in a simple string str (with only a numeric expression
in this case), and the result is in a variable res (default parameter
ValStrings is omitted) — the second version of the function.

3) A combination of 1 and 2 (parameter ValStrings contains vari-
ables and equations) — also the second version.

In all three cases, a special dynamic array, ResultArr: array of
Extended, is associated with the lines of ValStrings and represents
the results of the evaluation (if successful), as found in the unit
ParsList.pas, in the \AdvCalc\Source folder of the included down-
load file (see end of article for details).

The core problem solved by these functions is the parsing and
evaluating of an arithmetic expression built according to Pascal
syntax (more precisely, to that of ALGOL-60 because we’re going
to use a caret to denote raising to power, for example, 2^2^n,
meaning 2^(2^n), or e^(-x^2-y^2)). Syntax of
expressions in programming languages is usu-
ally presented by Backus-Naur Form (BNF), as
shown in Figure 2.

The recursive definitions are present in all three
components (Expression, Term, and Factor), but
may be easily eliminated from the former two.
The BNF for Expression just encodes the fact that it is a sequence
of Terms delimited by the Term Operation signs (and it can possibly
start with these signs). Similarly, a Term is a sequence of Factors
delimited by the Factor Operation signs. Thus, the key procedure
Expression (see Listing One beginning on page 20) uses iterative
loops for parsing Terms and Factors, being recursive only because
it implements the definition of the Factor and Primary Expression
(the Expression procedure is a modification of that by Jensen and
Wirth [1978]).

The NextToken procedure (see Figure 3) scans WorkStr and returns the
next token (in a string variable Tkn), which is either an alpha-numeric
string (possibly a number or a variable), a character (expected to be an
operation sign + ,- ,* ,/ ,^, or parenthesis), or empty.

Any procedure call requires allocation of the stack memory for
the parameters, local variables (if any), and for the result (in the
case of a function). To improve performance, one has to minimize
this overhead. Thus, the functions Expression, Term, and Factor
are designed without parameters, and with a minimal number of
local variables.

Different exceptions may occur and be raised while parsing. The user
can either handle them in his/her try..except clause, or just analyze
the Boolean result of the evaluation after acknowledging the warning
message in the ShowMessage box.

<TermOp> ::= +
<Expression> ::=
<FactOp> ::= * |
<Term> ::= <Fa
<Factor > ::= <P
<PrimaryExpr>

Figure 2: Backu
17 August 2000 Delphi Informant Magazine
The recursion here will not be infinite; it ends when the scanning
reaches the end of WorkStr, and the Tkn string is empty.

This procedure is used to build the advanced calculator and works
pretty well, but how fast is it? As a benchmark, I used a sample where
repetitive calculation of equations was run, first hard-coded and
compiled, and second, via the parsing procedure, Evaluate, described
previously. The sample equations are shown in Figure 4.

As you might predict, the parsing works much slower than the hard-
coded compiled code; with a 100MHz Pentium, it took 1870 μs
versus 2.6 μs, or 720 times slower. Fortunately, this speed doesn’t
really matter. It serves only user-driven dialog boxes like that in the
advanced calculator, where something near 2 ms per formula is still
fast enough. This isn’t always the case, however.

Suppose the evaluation of the formulas inputted by the user needs to be
performed massively for different values of the arguments, rather than
just once. For example, this is necessary for drawing a complex 2D or
3D image defined by the given equations. In this situation, a decrease
in speed of a thousand times less than that of the compiled code is
absolutely unacceptable. Thus, we will consider an alternative approach.

Compiled Evaluation
Processing the user-defined equations involves parsing, searching vari-
ables and function names in the corresponding lists, and evaluating
ASCII-coded numbers. That is what causes such a dramatic decrease
in speed. Is it possible to do this time-consuming processing just once
and encode all operations, their sequence, and intermediate binary

On Language
values into a certain structure so that later an efficient algorithm
could evaluate this structure for different arguments at a much greater
speed? One such structure is known as the postfix notation sequence
(Polish notation). Postfix notation sequence is a representation with-
out parentheses, where the operation codes follow their correspond-
ing operands. For example, the postfix notation for a + b*c is a b c * + ;
for e-(x^2 +y^2), it is x 2 ^ y 2 ^ + - exp.

The idea is that first we compile the source list of formulas into
such a structure, and, if successful, we apply an efficient algorithm
evaluating these postfix notations. Now let’s define the corresponding
structures and procedures.

The arithmetic expressions are built from operations requiring either two
arguments, or just one (such as the elementary functions and unary
minus). For simplicity’s sake, we accept the convention that any opera-
tion requires two arguments; if there is an excess argument, it should
always be 0. Then, in the case of unary minus (or plus), it works correctly
(-x = 0 - x, or, in postfix notation, 0 x -), while for the predefined
elementary functions, the second argument is simply ignored.

Our input data — a list of formulas — comes as TStrings. The output
data types representing the postfix notation are shown in Figure 5.
They are dynamic arrays of type object. For each formula (a string with
index i of TStrings), there is exactly one real number in dynamic array
Parameters[i], and one postfix notation line, PostfLines[i], in the object
TPostfixList corresponding to this formula. Each element of PostfLines
18 August 2000 Delphi Informant Magazine

var Parameters: array of Extended;

type
 TOperand = object
 { If not negative, it points to elem. of Parameters. }
 ParIndex: Integer;
 { Actual numeric value if ParIndex < 0. }
 ActualVal: Extended;
 function Value: Extended;
 end;

 TPostfixItem = object
 op: Char; { Operation code or nop. }
 Operand: TOperand; { Valid only if op = nop. }
 function myFunctions(const y, x: Extended): Extended;
 end;

 TPostf ix = object { One postf ix notation sequence. }
 Count: Integer;
 Items: array of TPostf ixItem;
 procedure Init(const curLine: Integer);
 function Evaluate: Extended;
 end;

 { List of postf ix notation sequences. }
 TPostf ixList = object
 Count: Integer;
 IsCorrect: Boolean;
 PostfLines: array of TPostf ix;
 function Compile(const ValStrings: TStrings;
 { optional. } Pf ixLookList: TStrings = nil): Boolean;
 function Evaluate(
 const GivenParams: array of Extended): Extended;
 end;

Figure 5: Data structures to represent a list of postfix notation
sequences.
includes a dynamic array of object TPostfixItems. Each postfix item
represents either an operation code op, or an Operand. The latter is
represented either by a real value ActualVal (which contains numeric
constants from the formulas), or an integer index ParIndex, referring to
the global dynamic array Parameters (containing values of the already
evaluated formulas in the previous lines).

Users usually deal only with two methods of the object
TPostfixList. First is:

function TPostf ixList.Compile(const ValStrings: TStrings;
 { optional. } Pf ixLookList: TStrings = nil): Boolean;
 { just to show postf ix notation.}

to compile the source list of formulas into the list of postfix
sequences; and then:

function TPostf ixList.Evaluate(
 const GivenParams: array of Extended): Extended;

for massive calculations with this list for different sets of the parameters.

For example, suppose that given the formulas in Figure 4 and default
values of x, y, z are in Memo1.Lines. Then if the declaration:

var MyPList: TPostf ixList

if MyPList.Compile(Memo1.Lines) is successful, we can call:

MyPList.Evaluate([5,6,7]), MyPList.Evaluate([8,9])

or do that in some loop. In other words, we can now override
dynamically a certain number of the beginning lines in a list of
linearly elaborated declarations.

Project1 in folder Postfix allows users to enter different formulas to
see the corresponding postfix notations and to evaluate them. The
parsing is performed in unit Pars.pas by a procedure (see Listing Two
on page 21) similar to that of Jensen and Wirth (1978). The postfix
processing code is in the unit Postfix.pas. (Both are in the folder
Postfix of the files included with this article.)

The key method here is the function Evaluate of object TPostfix,
containing an elegant and essentially recursive function named
GetResult. In general, there are many ways to evaluate a postfix
notation sequence. Select any triplet of consecutive items (Operand
Operand Operation), substitute it with their result as a new Operand,
and so on, until the process ends with just one Operand — the result
of the evaluation. But we need an algorithm that:
§ does not change the source postfix sequence, leaving it intact for

multiple use; and
§ does not create new copies of the source sequence (which would

be costly).

The recursive function, GetResult, in TPostfix.Evaluate was designed
with these in mind (see Figure 6).

A non-local variable, Pos, is assumed pointing to the position next
to where we want the processing of the postfix sequence to start.
Every call to GetResult decrements Pos (as a side effect). Depending
on what type the Items[Pos] is, GetResult returns either the value
of the Operand and immediately ends, or it calls the universal
function MyFunction to compute the required operation over the

On Language
two actual parameters — recursive calls to GetResult. Left-to-Right
parameter evaluation here is crucial; otherwise, the procedure will
not work. (The Left-to-Right evaluation order corresponds to the
parameter passing conventions register and Pascal, and the default
convention in Delphi is register.)

First, we have to call it with Pos pointing to the position after the end
of a postfix sequence, i.e.

Pos := Count

and the end of a correct postfix sequence must be an operation
code. Further actions evolve depending on what items precede the
current position in the postfix sequence, building a sophisticated tree
of recursive calls. But it is easy to prove that it works correctly, using
mathematical induction.

The shortest (trivial) sequence consists of just one Operand. The
next by length is a triplet Operand Operand Operation. It’s easy to
see that in both cases, GetResult returns a correct result, with Pos
pointing to the last processed item. This is the basis of the induc-
19 August 2000 Delphi Informant Magazine

function TPostf ix.Evaluate: Extended;
var
 Pos: Cardinal; { Must point to position next to the
 desired processing start. }
 function GetResult: Extended;
 begin
 Dec(Pos); { Pos < 0 may happen only in case of
 mistakes in postf ix sequence. }
 with Items[Pos] do
 if op = nop then
 { Items[Pos] is an operand. }
 Result := Operand.Value
 else
 { Items[Pos] is an operation. }
 Result := MyFunctions(GetResult, GetResult)
 end;
 { Left-to-Right parameter evaluation is essential! }
begin
 Pos := Count;
 Result := GetResult
end; { TPostf ix.Evaluate.}

Figure 6: The recursive GetResult function.

Figure 7: Two possible cases for the item at the position n.

Pos 1 ... n-1 n n+1

Case 1 Operation Operand Operation
Case 2 Operation Operation

Figure 8: The advanced calculator.
tion. Now, assuming that GetResult works correctly for sequences
of length n and less, we have to prove that it works for sequences
of the length n+1.

Then, the last item, Items[n+1], must be an Operation. Therefore, at
the beginning, GetResult goes to the branch:

Result := MyFunctions(GetResult, GetResult)

with Pos pointing to n. There are two possible cases for the item at the
position n, and they’re presented in the table in Figure 7.

In Case 1, the first-parameter call immediately returns the value of
the Operand. The second-parameter call, starting with position n-1,
must return the correct result by the induction assumption, “consum-
ing” all remaining items.

In Case 2, the first-parameter call must return the correct result by
the induction assumption also, stopping at some position m, where
0 < m < n. Otherwise, the postfix sequence would be wrong. The
remaining items from 0 to m-1, again by the induction assumption,
must present a correct postfix sequence, and be processed successfully
by the second-parameter call. This concludes the proof.

To test the efficiency of the compiled evaluation, I used as a benchmark
the same formulas used earlier, and it took 11.6 µs per formula. If the
same, but hard-coded formula sqrt(x*x + y*y + z*z) in the format:

sqrt(Parameters[0]*Parameters[0]+Parameters[1]*
 Parameters[1]+Parameters[2]*Parameters[2])

is substituted into the method TPostfList.Evaluate (instead of the
PostfLines[i].Evaluate), it takes 2.6 µs. Our postfix evaluation requires
4.45 times more than the hard-coded version of this formula, but this
is quite reasonable. The recursive function, GetResult, although itself
without parameters, calls MyFunctions (which has two parameters) and
therefore initiates two more recursive calls and corresponding records in
the stack. Will it grow exponentially (like in the case of the notorious
Ackerman function)? Fortunately, each call decrements the counter of
postfix items, and the total number of calls cannot exceed the initial
number of items in the postfix sequence — at least for a correct postfix
sequence. The method TPostfList.Evaluate prevents attempts to do this
if the field IsCorrect = False in the compiled object.

Features of the Advanced Calculator
Unlike other software imitations of the old days, where (scientific) cal-
culators had only a one-line display and a hidden register, this advanced
calculator takes full advantage of the computer screen, implementing
the standard mathematical notation for lists of formulas (see Figure 8).

When editing the lines in the Input box, every time you press R
or click Evaluate on the menu, the computer performs an evaluation
of the whole list of lines, displaying the results in the Results box.
Conversely, if you have changed the Input, but not pressed R or
clicked Evaluate, the Results box is cleared.

The advanced calculator is an object of type TForm. You can use it as
either a part of your application, adding the required forms and units
to your project (the entire content of the folder AdvCalc\Source), or
as a separate application (the folder AdvCalc\Exec). In the former
case, when adding the forms and the units, the forms HelpForm and
AboutBox should not be auto-created (the form CalcForm creates,
opens, and releases them).

On Language
Calculations with Series
To perform calculations listed on the Series item of the menu, you
must first input the terms (one to a line) of the desired series in the
Input box (each term may be a number, a formula, or an equation).
Then highlight the lines and select the necessary function from the
Series drop-down menu. With the following six lines, for example, if
you highlight the five lines beginning with “100”:

123 + 456

100

11^2

12^2

k = 13^2

14^2

and click Series | Sum in the menu, it allows you to obtain 100 + 11^2
+ 12^2 + 13^2 + 14^2 = 730.

Calculations Using a Formula
To perform calculations using the same formula for a series of values
of a certain variable, say var, first enter the list of the values, followed
by the formula, highlight them all together, and click Formula in the
menu. For example, if you highlight this:

123 + 456

var = 1

2

3

4

f = var^3

or this:

123 + 456

var = 1

2

3

4

var^3

and click Formula in the menu, it allows you to obtain function var^3
for var = 1, 2, 3, 4.

Conclusion
We’ve considered the problem of parsing and evaluating arithmetic
expressions for lists of linearly elaborated declarations, and discov-
ered that recursive procedures provide elegant and efficient solu-
tions. We also introduced the structures — a hierarchy of objects —
for representing and processing postfix notation sequences. Inciden-
tally, these structures are of type object (rather than class), proving
that the “old style” objects may still deliver the simplest solution
for certain problems. (In this particular case, only the encapsulation
feature of the OOP was used, because inheritance and polymor-
phism were not required.) ∆

References
K. Jensen, N. Wirth (1978). PASCAL. User Manual and Report.

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
AUG\DI200008AG.
20 August 2000 Delphi Informant Magazine
Alexander Gofen is a programmer at the Smith-Kettlewell Eye Research Institute
in San Francisco, CA where he has been working since 1995. Previously, he was
a Senior Researcher for the Institute of Computer Science (Academy of Sciences,
Russia) and Hydro-Meteorological Center in Moscow, Russia. Gofen has been
developing scientific applications in all versions of Delphi and Borland’s Pascal,
varying from the Numeric Weather Forecast and the Taylor Solver to the Macula
Mapping Test (Eye Research Institute). He can be reached via phone at (415)
345-2119, or e-mail at galex@ski.org.
Begin Listing One — Interpretive parsing
and evaluation
function Expression: Extended;
var
 TermOp, FactOp: Char; i: Shortint;

 function Term: Extended;

 function Factor: Extended;
 begin
 i := Functions.IndexOf(Tkn);
 if i >= 0 then { Function name correct. }
 begin
 NextToken;
 if Tkn <> '(' then
 raise Exception.CreateFmt(
 '%s'#10#13' "(" expected but "%s" found',
 [CurSegm,Tkn])
 end;
 if Tkn = '(' then
 { Factor is a function or expression. }
 begin
 NextToken; Result := Expression; { recursive! }
 if Tkn <> ')' then
 raise Exception.CreateFmt(
 '%s'#10#13' ")" expected but "%s" found',
 [CurSegm,Tkn]);
 NextToken;
 if i >= 0 then
 { For expression i < 0. }
 Result := MyFunctions(Result, i)
 end { Factor was a function or expression. }
 else { Factor is a variable or number. }
 begin
 if Tkn = '' then
 raise Exception.CreateFmt(
 '%s'#10#13' operand expected but nothing found',
 [CurSegm]);
 if EvaluVar(Tkn, Result) then
 NextToken
 else
 raise Exception.CreateFmt(
 '%s'#10#13' cannot evaluate %s',
 [CurSegm, Tkn])
 end; { Factor is a variable or number,
 possibly followed by power index. }
 while Tkn = '^' do begin
 NextToken;
 realExp := Factor; { recursive! }
 if Frac(realExp) <> 0.0 then
 Result := Power(Result, realExp)
 else
 Result := IntPower(Result, Floor(realExp))
 end
 end; { Factor. }

 begin { Term. }
 Result := Factor;

On Language
 while (Tkn = '*') or (Tkn = '/') do begin
 FactOp := Tkn[1]; NextToken;
 case FactOp of
 '*': Result := Result * Factor;
 '/': Result := Result / Factor
 end
 end
 end; { Term. }

begin { Expression. }
 Result := 0.0; { In case of unary + or -. }
 if (Tkn <> '+') and (Tkn <> '-') then
 Result := Term; { No unary + or -. }
 while (Tkn = '+') or (Tkn = '-') do begin
 TermOp := Tkn[1]; NextToken;
 case TermOp of
 '+': Result := Result + Term;
 '-': Result := Result - Term
 end
 end
end; { Expression. }

End Listing One

Begin Listing Two — Parse and create postfix
notation sequence
procedure Expression;
var
 TermOp, FactOp: Char; i: Shortint;
 procedure Term;

 procedure Factor;
 begin
 i := Functions.IndexOf(Tkn);
 if i >= 0 then { Correct function name. }
 begin
 NextToken;
 if Tkn <> '(' then
 raise Exception.CreateFmt(
 '%s'#10#13' "(" expected but "%s" found',
 [CurSegm,Tkn]);
 end;
 if Tkn = '(' then
 { Factor is a function or expression. }
 begin
21 August 2000 Delphi Informant Magazine
 NextToken; Expression; { Recursive! }
 if Tkn <> ')' then
 raise Exception.CreateFmt(
 '%s'#10#13' ")" expected but "%s" found',
 [CurSegm,Tkn]);
 NextToken;
 if i >= 0 then { Function #i. }
 begin
 TempPfxLine.Add('0'); { 2nd operand 0. }
 TempPfxLine.Add(Chr(i))
 end
 end { Factor was a function or expression. }
 else { Factor is a variable or number. }
 begin
 if Tkn = '' then
 raise Exception.CreateFmt(
 '%s'#10#13' operand expected but not found',
 [CurSegm]);
 TempPfxLine.Add(Tkn); NextToken
 end; { Factor is a variable or number,
 possibly followed by power index. }
 while Tkn = '^' do begin
 NextToken; Factor; { Recursive! }
 TempPfxLine.Add('^')
 end
 end; { Factor. }

 begin { Term. }
 Factor;
 while (Tkn = '*') or (Tkn = '/') do begin
 FactOp := Tkn[1]; NextToken; Factor;
 TempPfxLine.Add(FactOp)
 end
 end; { Term. }

begin { Expression. }
 if (Tkn = '+') or (Tkn = '-') then
 TempPfxLine.Add('0') { 0 +... or 0 -... }
 else
 Term;
 while (Tkn = '+') or (Tkn = '-') do begin
 TermOp := Tkn[1]; NextToken; Term;
 TempPfxLine.Add(TermOp)
 end
end; { Expression. }

End Listing Two

22 August 2000 Delphi Informant Magazine

Greater Delphi
WAP / WML

By Mike Riley
WAP Apps
Writing WAP-WML Applications in Delphi

Since its third version, Delphi has provided programmers with easy tools and language
enhancements designed to connect data to the Web. The form of data delivery has

been primarily intended for Web browsers running on PCs physically connected to the
Internet via a wire. Ubiquitous Internet connectivity has recently evolved to the next level,
with the introduction of wireless connectivity for TCP/IP-intended data to portable, hand-
held displays. The two recently established standards that have allowed this to occur are
Wireless Application Protocol (WAP) and Wireless Markup Language (WML).

WAP-WML for an HTTP-HTML World
WAP and WML are analogous to HTTP and
HTML, respectively. The protocol and markup
languages were designed for optimal delivery of
short bursts of data traveling along a wireless
network. These are traditionally Cellular Digital
Packet Data (CDPD) and Mobitex Wireless Data
(a.k.a. Bell South Wireless Data [BSWD]) net-
works, due to the extensive infrastructure previ-
ously constructed for digital mobile phone ser-
vice. Because digital wireless communication is
still being deployed, WAP-WML functionality
may not be available in all areas for some time.
However, most major metropolitan cities already
have these networks operational, with additional
coverage areas being added daily. It’s only a
matter of time before the entire planet will be
accessible through these wireless digital pathways.

So why develop another Web protocol? WAP
is optimized for wireless network delivery.
Hence, gateways provided by companies such
as Phone.com (developers of the Unwired
Planet wireless Web browser) convert TCP/IP
Web transmissions into WAP delivery over the
CDPA-BPMA wireless networks. Doing so fur-
ther allows the data packets to minimize the
delivery time over the network, while using
the extensive infrastructure already installed for
wireless voice communications.

So why develop another markup language? One
glance at the display on a digital mobile phone or
pager is convincing enough. The screen real estate
on many of these devices is often limited to 80
characters or less. To imbue additional formatting
rules, such as style sheets and absolute positioning,
would not only require a more expensive processor
and increased memory in the device to handle the
advanced rendering needs, but it would also be
impractical from a designer’s standpoint, given the
tiny view of data the user will be able to see at
one time. To help offset the reduced screen size
and lengthy data packet transmission time, WML
employs the concept of a “card deck” to provide
multiple page views in a single transmission. This
reduces the amount of traffic between the client
and server, and provides the user with a perceived
dramatic increase in access speed.

WAP/WML-enabled devices are just now hitting
the consumer market. Many of the Web-enabled
phones that were previously released are embedded
with an older markup methodology developed by
Unwired Planet, called Handheld Device Markup
Language (HDML). With the advent of XML
and the need for an open consortium-developed
standard, Unwired Planet submitted HDML as a
template from which to construct WML. Hence,
HDML may still be required for “legacy” devices
for some time. Rather than dwell on the constructs
of this antiquated markup language, I leave it to
the reader to pursue the variations between the two
languages. Because WML was developed from the
seed of HDML, it’s often easier to initially develop
content in HDML format and upsize it to WML.
Unfortunately, there is currently no way for older
HDML browsers to gracefully degrade WML to a
renderable state. The UP WML-enabled browsers
being embedded in the new line of portable com-
munication devices can render HDML for pre-
cisely these legacy code reasons.

Greater Delphi
The Path to Delphi WAP-WML Enlightenment
First, research the links listed in the References section at the end
of this article. The first stop should be http://updev.phone.com to
obtain the free Phone.com UP.SDK 4.0. The SDK provides WML
reference documentation, samples, and a phone simulator. Using the
simulator is much less expensive than developing on a live device. It
features a number of good debugging services as well.

Next, install Personal Web Server 4.0 (or higher) if you’re isolated
to a Windows 95/98 workstation. Otherwise, install IIS 4.0 (or
higher) on an accessible Windows NT Server platform. While I
could have just as easily written this demo as an ISAPI or NSAPI
DLL using Delphi’s Web dispatcher technology, I decided to adopt
the ASP object approach introduced by Ron Loewy in his March,
1999 Delphi Informant Magazine article, “Active Server Pages.”

I did this because most develop-
23 August 2000 Delphi Informant Magazine

Figure 2: The Phone.com SDK ga

Figure 1: The Phone.com
simulator.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card title=" WAP-WML Demo">
 <p mode="nowrap"> WAP-WML Delphi Demo
 <select>
 <option onpick=
 "http://www.accuweather.com/uwp/weather/95624/menu">
 Local Weather</option>
 <option onpick=
 "http://guides3.infospace.com/
 _1_40JOUNF04MP191Y__phone.att/reverse.hdml">
 Reverse Phone</option>
 <option onpick=
 "http://ff5.quote.com/fq/uplanet/quote">
 Stock Price</option>
 <option onpick=
 "http://204.202.137.120/up/sections/us/index.hdml">
 US Headlines</option>
 <option onpick=" wtai://wp/mc;9166866610">
 Call Delphi Informant</option>
 <option onpick="#server">Server Info</option>
 <option onpick="#about">About About this demo</option>
 <option onpick="#mike">About Mike Riley</option>
 </select>
 </p>
 </card>
 <card id="server">
 <p>
ers running Win32-based Web
services these days are running
them from PWS or IIS because
they’re free, integrate well within
the Windows OS, provide easier
debugging, and are well sup-
ported. Naturally, the other
advantages that Mr Loewy
asserted for ASP-based Delphi
COM objects continue to hold
true.

Once the Web server is opera-
tional, create a directory named
WML in the Web server’s
root directory, and mark it
for read and scripting privi-
leges. To immediately test the
installation, download the code
included with this article (see
end of article for details), unzip
it, and place the contents of
the archived WML directory
into the WML directory you
created within your Web serv-
er’s root directory. Register
DIWML.DLL via the
teway testing application.
regsvr32.exe program, launch the UP.Simulator, and target the
directory via http://localhost/wml/. The results displayed should
be identical to Figure 1.

I have also included an hdml directory, which provides the demon-
stration project outputting content in HDML format. This can be
immediately employed to deliver to UP.Browser-enabled phones in
consumers’ hands today, including mobile phones offered through
service providers, such as Sprint PCS.

In addition, the Phone.com SDK includes a gateway testing
application, illustrated in Figure 2. To use this application, a
free developer account must be established with Phone.com’s “dev-
gate” gateway. This gateway provides alert messaging capabilities
 Available space on drive c: 917MB of 6266MB.
 </p>
 </card>
 <card id="about">
 <p>
 Welcome to the wireless version RileyFAN,
 Mike Riley's Family Area Network.
 </p>
 </card>
 <card id="mike">
 <p>
 Mike Riley is currently working for RR Donnelley
 & Sons as the company's Director of Internet
 Application Development.
 </p>
 </card>
</wml>

Figure 3: A formatted version of sample WML output sent to
the UP.Simulator.

http://updev.phone.com
http://localhost/wml/

Greater Delphi
to the developer for event notification applications requirements.
Although only VB and VC++ code examples of the SendNtfn
alert messaging application is included in the SDK, porting key
components of this application to Delphi is a painless endeavor.

The Code
The code is straightforward. The ASP COM details have already
been discussed in Mr Loewy’s article, so I will focus primarily on
the Main procedure (see Listing One). One notable line of code is
properly setting the ContentType equal to text/vnd.wap.wml, not
the default text/html that is intended for Web browsers.

The other significant code fragment is the line containing the DiskFree
and DiskSize Delphi System unit calls. This demonstrates the primary
reason why developers may prefer to write ASP-based COM DLLs in
Delphi rather than rely on Microsoft-provided ASP function libraries.
Review the code in Figure 3 for a formatted version of sample WML
output sent to the UP.Simulator.

Conclusion
Once developers become comfortable with WML, the accessibility
and convenience of untethered client/server communication, and
the portability of these Web-enabled devices, the creative opportu-
nities really blossom. Although the demonstration code provided
in this article was limited to checking disk space, the possibilities
of combining the rich programmatic strengths of Delphi with
remote communication are endless. Imagine processing a batch
billing cycle with the press of a button, or sending off Web-
clipping service bots to report on news, stock, and weather condi-
tions, or even linking into X-10, Jini, or Microsoft’s Universal
Plug-and-Play home devices to remotely configure and inquire on
your home’s status.

And to think, all of this can be exercised today while relaxing on a beach
with a cool drink in one hand, and a cool phone in the other. ∆

References
§ HDML specification and Phone.com’s developer site,
 http://updev.phone.com
§ WAP and WML specifications, http://www.wapforum.org/what/

technical.htm
§ Wireless simulators — UP.Simulator, available at
 http://updev.phone.com
§ RIM Developer Zone, http://developers.rim.net/handhelds/

index.html
§ Ron Loewy’s ASP article, http://www.DelphiZine.com/features/
 1999/03/di199903rl_f/di199903rl_d.asp
§ Microsoft Personal Web Server 4.0,

http://www.microsoft.com/Windows/ie/pws/default.htm
§ Microsoft IIS 4.0, http://www.microsoft.com/ntserver/nts/

downloads/recommended/NT4OptPk/default.asp

Recommended WML device service providers:
§ Sprint PCS for UP.Browser-enabled phones,
 http://www.sprintpcs.com
§ GoAmerica for RIM-enabled WML messaging units,
 http://www.goamerica.net

The project referenced in this article is available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
AUG\DI200008MR.
24 August 2000 Delphi Informant Magazine
Begin Listing One — The Main procedure
{ This procedure f irst validates the browser type via the
 Validate procedure call. If the browser is the correct
 type, the WML code is sent. Note the ContentType must be
 assigned to the data in order for the WML browser to
 render the content. Also, while Chr(10)+Chr(13) character
 combinations could have been added to each line to
 improve source readability in a standard browser, these
 characters are stripped and all white space is removed
 when WML code passes over a WAP gateway to further
 compress the packet size being delivered to the wireless
 device. Hence, including them would only be useful for
 more legible debugging purposes.

 Lastly, note the Delphi System unit call in the 'server'
 card. This is where the power of Win32-based commands is
 realized. Other possibilities include connecting to and
 displaying data sources, programatically activating
 server processes such as triggering backups, inquiring
 about event monitor status, sending e-mail, activating
 Web bots, sending data to the COM ports, and a slew of
 other possibilities. }
procedure TASPObject.Main;
begin
 Validate;
 if isvalid then begin
 ASPResponse.ContentType := 'text/vnd.wap.wml';
 ASPResponse.Write('<?xml version="1.0"?>');
 ASPResponse.Write('<!DOCTYPE wml PUBLIC' +
 ' "-//WAPFORUM//DTD WML 1.1//EN"');
 ASPResponse.Write(
 '"http://www.wapforum.org/DTD/wml_1.1.xml">');
 ASPResponse.Write('<wml>');
 ASPResponse.Write('<card title="WAP-WML Demo">');
 ASPResponse.Write('<p mode="nowrap">');
 ASPResponse.Write('WAP-WML Delphi Demo');
 ASPResponse.Write('<select>');

 // Replace Delphi Informant's 95624 office ZIP Code
 // with your local zip code.
 ASPResponse.Write('<option onpick="http://www.' +
 'accuweather.com/uwp/weather/95624/menu">' +
 'Local Weather</option>');
 ASPResponse.Write('<option onpick="http://guides3. ' +
 'infospace. com/_1_40JOUNF04MP191Y__phone.att/' +
 'reverse.hdml">Reverse Phone</option>');
 ASPResponse.Write('<option onpick="http://ff5.quote' +
 '.com/fq/uplanet/quote">Stock Price</option>');
 ASPResponse.Write('<option onpick="http://204.202. ' +
 '137.120/up/sections/us/index.hdml">US Headlines' +
 '</option>');
 // Replace Delphi Informant's 9166866610 office phone
 // number with your phone number.
 ASPResponse.Write('<option onpick="wtai://wp/mc; ' +
 '9166866610">Call Delphi Informant</option>');
 ASPResponse.Write('<option onpick="#server">' +
 'Server Info</option>');
 ASPResponse.Write('<option onpick="#about">' +
 'About this demo</option>');
 ASPResponse.Write('<option onpick="#mike">' +
 'About Mike Riley</option>');
 ASPResponse.Write('</select>');
 ASPResponse.Write('</p>');
 ASPResponse.Write('</card>');

Mike Riley is the Director of Internet Application Development for RR Donnelley
& Sons, North America’s largest printer. He actively participates in the company’s
Internet, intranet, and extranet strategies using a wide variety of Web-enabled
technologies, including Delphi 4. Mike can be reached via his spam-shielding
e-mail address, mike_riley_@hotmail.com.

http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://updev.phone.com
http://developers.rim.net/handhelds/index.html
http://developers.rim.net/handhelds/index.html
http://www.DelphiZine.com/features/1999/03/di199903rl_f/di199903rl_d.asp
http://www.DelphiZine.com/features/1999/03/di199903rl_f/di199903rl_d.asp
http://www.microsoft.com/Windows/ie/pws/default.htm
http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/default.asp
http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/default.asp
http://www.sprintpcs.com
http://www.goamerica.net

Greater Delphi
 ASPResponse.Write('<card id="server">');
 ASPResponse.Write('<p>');
 ASPResponse.Write('Available space on drive c: ');
 ASPResponse.Write(IntToStr(DiskFree(3) div 1000000) +
 'MB of ' + IntToStr(DiskSize(3) div 1000000) +'MB.');
 ASPResponse.Write('</p>');
 ASPResponse.Write('</card>');
 ASPResponse.Write('<card id="about">');
 ASPResponse.Write('<p>');
 ASPResponse.Write('This WAP-WML session was' +
 ' generated by a Delphi-constructed ASP-enabled' +
 ' COM object.');
 ASPResponse.Write('</p>');
 ASPResponse.Write('</card>');
 ASPResponse.Write('<card id="mike">');
 ASPResponse.Write('<p>');
 ASPResponse.Write('Mike Riley is currently working' +
 ' for RR Donnelley & Sons as the company's ');
 ASPResponse.Write('Director of Internet Application' +
 ' Development.');
 ASPResponse.Write('</p>');
 ASPResponse.Write('</card>');
 ASPResponse.Write('</wml>');
 end;
end;

End Listing One
25 August 2000 Delphi Informant Magazine

26 August 2000 Delphi Informant Magazine

In Development
State-dependent Systems / OOP / Observer Pattern

By Michael L. Perry

Figure 1: The Observer pattern.

Subject

+Register(o : Observer)
+Unregister(o : Observer)
+Notify()

Concrete Subject

+GetA() : type
+SetA(value : type)

subject

Notify;

for each o in ob
o.Update;
Dependency Tracking
Managing State, Not Process

When I was studying computer science in college, I took a FORTRAN course from
an engineer. He taught that the model for a program was input, calculation, and

output. The model worked well for all the problems he had solved; he couldn’t envision
a program apart from process.
Then I graduated and immediately went to work
for an oil and gas company porting a DOS applica-
tion to Windows. I quickly learned that the proce-
dural model of application development no longer
applied. The modern application is not input, cal-
culation, and output. It is state dependent.

For example, take a financial ledger, such as
a checkbook. The underlying data model is
essentially a list of transactions. The order of
the transactions depends upon their dates and
check numbers. The balance of each transaction
depends upon its amount and the balance of
the previous transaction. The view, furthermore,
depends upon the transactions, order, and bal-
ances. The most important task of the check-
book program is to update these dependent
states as the user makes changes to the underly-
ing data model.
Observer

+Update()

Concrete Observer

+Create()
+Destroy()
+Update()

subject.Register(Self);

subject.Unregister(Self);

subject.GetA;

0+

observers

servers do
The traditional approach is to design one process
that sorts transactions, another that calculates bal-
ances, and another to draw the view. The designer
then must consider every circumstance in which
the order, balances, or view could change, and then
update accordingly.

One popular mechanism for doing this is the
Observer pattern, whose structure is shown in
Figure 1 (for further reference, see Design Patterns,
Gamma, et al. [Addison-Wesley, 1995]). This
requires observers to register with their subjects,
which imposes three restrictions.
§ First, dependency relationships are static. An

observer may only care about a particular sub-
ject under certain circumstances, but it must
still register and respond to it in all cases.
§ Second, care must be taken to destroy objects

in the proper order. If the subject is destroyed
before the observer, the observer will crash
when it tries to un-register.
§ Third, the observer might respond to many

simultaneous changes. One action by the user
could affect many subjects with which the
same observer has registered, causing redun-
dant updates.

Another mechanism is the document/view archi-
tecture (see Figure 2). A document template
mediates the relationship between a document
and its many views. Such a system requires three
maintenance tasks:
1) Hint messages must be manually routed.

In Development
2) A unique hint identifier is required for each possible state change.
3) Views must consider each possible circumstance in which they

could be affected, and respond to all associated hints.
27 August 2000 Delphi Informant Magazine

Figure 2: Document/view architecture.

Document Template

+UpdateAllViews(hint: eChange)

Document

+UpdateAllViews(hint: eChange)

Data Object

+GetA() : type
+SetA(value : type)

+

+

document

if hint=HINT_A then
dataobject.GetA;

doc.UpdateAllViews(HINT_A);

Source

+Create()
+GetA() : type
+SetA(value : type

Intermediate

+Create()
+GetB() : type
+OnUpdatedB()

Tar

+Create()
+OnUpdate

Dynamic

Precedent

+OnGet()
+OnSet()

dyn :=Dynamic.Create;

dyn.OnGet;

dyn.OnSet;
dep.OnGet;

source.GetA;

source intermediate

dep :=Dependent.
 Create(OnUpdatedB);

Dependent

+OnGet()

Vis

Precedent

vis

depdyn

Figure 3: Structure of dependency tracking.

Figure 4: The demonstration application.
These three tasks make maintenance difficult. Developers spend more
time keeping the hint mechanism operating than they do working on
the actual problem.
View

OnUpdate(hint: eChange)

Visible Object

OnUpdate(hint: eChange)

views0+

get

dC()

intermediate.GetB;

vis :=Visible
 Create(OnUpdateC);

ible

Precedent

Dependent

+OnGet()
The ideal mechanism would be similar
to a spreadsheet. The spreadsheet user
simply enters a formula into a cell, and
the program figures out when to cal-
culate the value. It’s easy to combine
several simple calculations to form one
complex system, yet a local change
doesn’t have a global impact. Of course,
for the spreadsheet paradigm to work for
complex software problems, we require
an object-oriented, dependency-tracking
framework.

The Goals of Dependency Tracking
Dependency tracking is a way of describ-
ing different kinds of state of a system and
letting the framework take care of their
relationships. Like a spreadsheet, it dis-
covers the relationships among attributes,
and determines the proper order of calcu-
lation. Unlike a spreadsheet, it does so in
an object-oriented environment.

The key to dependency tracking is dif-
ferent kinds of state. Consider the check-
book problem to see examples of each:
dynamic, dependent, and visible. The list
of transactions is dynamic. Transactions
can be added, deleted, or changed at
any time. Dynamic state is the ultimate
source of information in the system. The
order of the transactions and running
balances are dependent. They’re deter-
mined via calculation dependent upon
the dynamic attributes. Dependent state
represents an intermediate point in a sys-
tem’s information flow. The view of the
ledger is visible. It depends upon other
attributes, and it directly affects what the
user sees. Visible state is the ultimate
destination of information in the system.

Dependency tracking uses these three
kinds of state to discover relationships
and determine the timing of calcula-
tions. This mechanism has the following
advantages:
§ No registration. All relationships are

discovered automatically.
§ Dynamic relationships. A dependent

only responds to the attributes it
depends upon at that moment.
§ No redundant updates. A dependent

responds only once to simultaneous
changes.
§ Arbitrary order of destruction. Depen-

dency tracking will function no matter
which object is destroyed first.
§ Simple maintenance. The developer

In Development

 TCalculationSet = class(TObject)
 public
 ...
 function GetResult: Double;
 private
 { Attributes. }
 ...
 m_dResult: Double;
 { Sentries. }
 ...
simply identifies dynamic, dependent, and visible states; the
system discovers their relationships.

Of course, this mechanism isn’t applicable to every situation. Depen-
dency tracking has the following disadvantages:
§ Slight performance hit. It takes time and memory to discover

and record dependency relationships.
§ Must be end-to-end. Unless the developer identifies the

dynamic state, its dependents will not be updated.
§ Doesn’t work across thread or process boundaries. For the

framework to discover dependency relationships, the calculation
can’t rely upon other threads.

§ Single language. Both end points of a dependency relation-
ship must be implemented in the same language.

§ Data must be live. Without the help of additional program-
ming, dependency tracking can’t discover relationships on data-
base records, files, or other forms of persistent data.

The Application of Dependency Tracking
To identify dynamic, dependent, and visible attributes, an appli-
cation pairs each one with a sentry object (see the sidebar “Glos-
sary” on page 32). Sentries discover and maintain the dependency
relationships among the attributes by forming connections among
themselves. The structure diagram in Figure 3 illustrates this
interconnection among sentries.

The application accompanying this article, DT, illustrates the power
and ease of dependency tracking (this application is available for
download; see end of article for details). DT contains a model with
three calculation sets. From the main form (see Figure 4), the user
can open a calculation form for any of these three. The main form
also displays the result of each of the three calculations. On the
calculation form, the user can enter three values and choose one of
three operations. The form shows the result of the calculation.
28 August 2000 Delphi Informant Magazine

 TCalculationSet = class(TObject)
 public
 ...
 { Access methods. }
 function GetA: Real;
 procedure SetA(value: Double);
 ...
 private
 { Attributes. }
 m_dA: Double;
 ...
 { Sentries. }
 m_dynA: TDTDynamic;
 ...
 end;
...
function TCalculationSet.GetA: Double;
begin
 { Notify the sentry. }
 m_dynA.OnGet;
 Result := m_dA;
end;

procedure TCalculationSet.SetA(value: Double);
begin
 if value <> m_dA then begin
 { Notify the sentry. }
 m_dynA.OnSet;
 m_dA := value;
 end;
end;

Figure 5: Declaration and use of a dynamic sentry.
This example illustrates several features of dependency tracking.
The user can open multiple calculation forms based on the
same set. When the user makes changes in one of these, the
changes are reflected in all the others. This is the main goal of
dependency tracking and the feature for which an application
would use the mechanism.

The example also contains some features strictly to illustrate some
additional benefits of dependency tracking. Each result keeps a hit
count, which shows how often it’s been calculated. Observing this
hit count, the user can see that the result depends only upon the
inputs used to calculate its current value. For instance, when the
operation “A+B” is selected, changing C doesn’t increment the hit
count. Change the operation to “B+C” and notice that changing A
now has no effect. This illustrates that dependencies are dynamic.

Finally, the calculation form features a button that simultaneously
increments all three inputs. Observing the hit count, the user can
see that the result is updated only once. Had we used the Observer
pattern, the result would have been updated three times: one for
each input change. This illustrates that dependency tracking avoids
redundant updates.

Though these features of dependency tracking are exciting, the most
valuable asset of this mechanism is its maintainability. The applica-
 m_depResult: TDTDependent;
 { Update procedure for the dependent attribute. }
 procedure OnUpdateResult;
 end;
...
constructor TCalculationSet.Create;
begin
 inherited;
 { Create the sentry objects. }
 ...
 m_depResult := TDTDependent.Create(OnUpdateResult);
 ...
end;
...
function TCalculationSet.GetResult: Double;
begin
 { Notify the sentry. }
 m_depResult.OnGet;
 Result := m_dResult;
end;

procedure TCalculationSet.OnUpdateResult;
var
 operation: TCalculationSetOperation;
begin
 operation := GetOperation;
 if operation <> nil then
 { Calculate the result. }
 m_dResult := operation.Calculate(Self)
 else
 m_dResult := -1.0;
end;

Figure 6: Declaration and use of a dependent sentry.

In Development

 TMainForm = class(TForm)
 ...
 private
 ...
 { The idle procedure. }
 procedure AppOnIdle(
 Sender: TObject; var Done: Boolean);
 end;
...
procedure TMainForm.FormCreate(Sender: TObject);
begin
 ...
 { Set up the idle procedure. }
 Application.OnIdle := AppOnIdle;
 ...
end;
...
procedure TMainForm.AppOnIdle(
 Sender: TObject; var Done: Boolean);
begin
 { Allow dependency system to perform idle processing. }
 DTOnIdle;
end;
tion developer doesn’t need to specify relationships between depen-
dent and dynamic state, only to identify different types of state and
let the system discover the relationships. Take a closer look at how the
sample application does this.

To identify dynamic attributes, TCalculationSet declares a sentry and
pair of access methods for each (see Figure 5). For instance, in
addition to the numeric attribute m_dA, the class defines the sentry
m_dynA. In accordance with proper encapsulation, the class also
defines a pair of access methods. The GetA access method calls the
sentry’s OnGet, and SetA calls OnSet.

To identify a dependent attribute, TCalculationSet declares a
sentry, an update procedure, and a single access method (see
Figure 6). For the result of the calculation, the class defines both
the numeric m_dResult, and the sentry m_depResult. The class
further defines the procedure OnUpdateResult to calculate this
attribute, and passes the procedure to the sentry via its construc-
tor. Because the update procedure determines the attribute’s value,
the class declares only one access method, GetResult, which calls
the sentry’s OnGet method.

Visible attributes, being a special type of dependent attribute, receive
similar treatment. To identify a visible attribute, TMainForm declares a
sentry and an update procedure (see Figure 7). For example, it passes
the update procedure OnUpdateResult1 to the sentry m_depResult1 via
its constructor. Because visible attributes are rarely accessed by other
classes, an access method isn’t necessary. Instead, the update procedure
puts its results directly into the Text property of a control, thereby
making it visible to the user.

One final step is required to get dependency tracking working in
this application. To bring visible attributes up-to-date, the application
must periodically call DTOnIdle. TMainForm does this within the
AppOnIdle procedure, which is assigned to the Application.OnIdle
event (see Figure 8).
29 August 2000 Delphi Informant Magazine

 TMainForm = class(TForm)
 ...
 private
 { Sentries. }
 ...
 m_visResult1: TDTVisible;
 ...
 { Update procedures for the results. }
 procedure OnUpdateResult1;
 ...
 end;
...
procedure TMainForm.FormCreate(Sender: TObject);
begin
 ...
 { Create the sentries. }
 m_visResult1 := TDTVisible.Create(OnUpdateResult1);
 ...
end;
...
procedure TMainForm.OnUpdateResult1;
begin
 { Update the edit box with the calculation results. }
 ebResult1.Text := FloatToStrF(
 m_Model.GetSet1.GetResult, ffFixed, 7, 3);
 { Increment the hit count (for illustration only). }
 Inc(m_nHits1);
 ebHits1.Text := IntToStr(m_nHits1);
end;

Figure 7: Declaration and use of a visible sentry.
As this example shows, the steps for implementing dependency
tracking in an application are quite simple. More importantly,
these steps are local, making maintenance much easier. For each
dynamic, dependent, or visible attribute that a class contains, it
must also include the appropriate kind of sentry. They maintain
these sentries through access methods and update procedures,
completely embracing the concept of encapsulation. The applica-
tion doesn’t need to consider the relationships among its various
attributes; that is left to the dependency-tracking framework.

The Rules of Dependency Tracking
To discover dependency relationships, the framework recognizes three
rules. These rules form the fundamental basis of the mechanism, and
they are necessary and sufficient to solve the problem.

The first rule of dependency tracking is that a dependent attribute
must be up-to-date whenever its value is needed. If no one cares
Figure 8: Implementation of the OnIdle event.

constructor TDTVisible.Create(OnUpdate: TUpdateProcedure);
begin
 inherited;
 { Add visible dependents to the list. }
 g_lpdVisible.Add(Self);
end;
...
procedure DTOnIdle;
begin
 { Make all visible dependent attributes up to date. }
 ...
 g_nIndex := 0;
 while g_nIndex < g_lpdVisible.Count do begin
 TDTDependent(g_lpdVisible[g_nIndex]).MakeUpToDate;
 Inc(g_nIndex);
 end;
 ...
end;
...
procedure TDTDependent.OnGet;
begin
 MakeUpToDate;
 ...
end;

Figure 9: Implementation of the first rule. Dependents are
brought up-to-date when necessary.

procedure TDTDynamic.OnGet;
begin
 { Establish dependency between the current update
 and this attribute. }
 RecordDependent;
end;
...
procedure TDTDependent.OnGet;
begin
 ...
 { Establish dependency between the current update
 and this attribute. }
 RecordDependent;
end;
...
procedure TDTPrecedent.RecordDependent;
begin
 { Get the active dependent. }
 { Verify that the link does not already exist. }
 if (g_pUpdate <> nil) and
 (m_lpdDependents.IndexOf(g_pUpdate) = -1) then begin
 { Establish a two-way link. }
 g_pUpdate.AddPrecedent(Self);
 m_lpdDependents.Add(g_pUpdate);
 end;
end;

Figure 11: The second half of the implementation of the second
rule. When a precedent is referenced, it creates a link to the
active dependent.

procedure TDTDependent.MakeUpToDate;
var
 pStack: TDTDependent;
begin
 { Check update status. }
 case m_eStatus of
 DT_UPDATING:
 OutputDebugString(
 'Cycle discovered during update.\n');
 DT_OUT_OF_DATE:
 begin
 { Push myself to the update stack. }
 pStack := g_pUpdate;
 g_pUpdate := Self;
 { Update the attribute. }
 m_eStatus := DT_UPDATING;
 try
 m_OnUpdate
 finally
 m_eStatus := DT_UP_TO_DATE;
 { Pop myself off the update stack. }
 Assert(g_pUpdate = Self);
 g_pUpdate := pStack;
 end;
 end;
 { DT_UP_TO_DATE: }
 { No action required. }
 end;
 Assert(m_eStatus = DT_UP_TO_DATE);
end;

Figure 10: The first half of the implementation of the second
rule. A dependent sentry pushes itself onto a stack, and calls its
update procedure.

In Development
what its value is, an attribute can simply remain out-of-date.
However, when someone shows interest, the attribute must be
recalculated. For non-visible, dependent attributes, this implies
that the value is updated only when referenced. For visible attri-
butes, however, the value must be updated regularly.

The second rule is that a dependent only depends upon the attributes
used to calculate its current value. If an attribute wasn’t referenced
during the previous update, then it had no effect on the outcome,
but the attributes that were referenced probably did. These attributes
are called precedents. A precedent may be a dynamic attribute, or it
may be another dependent.
Figure 12: Interaction diagram of the implementation of the first and second rules. The system
discovers the dependency relationship between a dependent attribute and its precedent, while the
dependent is brought up-to-date.

DTOnIdle

OnIdle

TDTDependent

MakeUpToDate

TMyView

OnUpdate

UP-TO-DATE
Pop

Push
UPDATING

TMyDocument

GetX

TDTDynamic

onGet

TDTPrecedent

RecordDependent

AddPrecedent(Self)
The third rule is that a dynamic
attribute, when changed, makes all
of its direct and indirect depen-
dents out-of-date. Those depen-
dents will remain out-of-date until
their value is required, as per
the first rule. Direct dependents,
as you may infer, are those that
depend directly on the dynamic
attribute. Indirect dependents are
those that depend upon other
dependents.

The implementation of the depen-
dency-tracking framework follows
directly from these three rules. In
the absence of these rules, the
code can be difficult to understand.
However, when seen in context,
the code falls neatly into place.
30 August 2000 Delphi Informant Magazine
The Implementation of Dependency Tracking
The framework implements one sentry class each for dynamic,
dependent, and visible state. Because visible state is a type of
dynamic state, the visible sentry inherits much of its implementa-
tion from the dynamic sentry. Because a dependent attribute can
depend upon any of the three types of attributes, all three share a
common base class as precedents.

To implement the first rule, the framework responds when some-
one requires the value of a dependent attribute (see Figure 9). It
maintains a list of visible dependents to be updated at idle time.
DTOnIdle traverses this list, calling TDTDependent.MakeUpToDate
for each member. Similarly, when an access method calls
TDTDependent.OnGet, the framework again responds by calling
TDTDependent.MakeUpToDate.

In Development

procedure TDTDynamic.OnSet;
begin
 { When a dynamic attribute changes,
 its dependents become out-of-date. }
 MakeDependentsOutOfDate;
end;
...
procedure TDTPrecedent.MakeDependentsOutOfDate;
begin
 { When I make a dependent out-of-date, it will call
 RemoveDependent, thereby removing it from the list. }
 while m_lpdDependents.Count > 0 do
 TDTDependent(m_lpdDependents.First).MakeOutOfDate;
end;
...
procedure TDTDependent.MakeOutOfDate;
var
 nCount: Integer;
 nIndex: Integer;
begin
 Assert(m_eStatus = DT_UP_TO_DATE);
 { Tell all precedents to forget about me. }
 nCount := m_lpdPrecedents.Count;
 for nIndex := 0 to nCount-1 do
 TDTPrecedent(m_lpdPrecedents[nIndex]).
 RemoveDependent(Self);
 m_lpdPrecedents.Clear;
 { Make all indirect dependents out-of-date, too. }
 MakeDependentsOutOfDate;
 m_eStatus := DT_OUT_OF_DATE;
end;

Figure 13: Implementation of the third rule. When changed, a
dynamic attribute makes its dependent out-of-date.

Figure 14: Interaction diagram of the implementation of the third rule.
A change to a dynamic attribute signals its dependent attribute to
become out-of-date.

TDTDependent

OUT-OF-DATE

TMyDocument

SetX

TDTDynamic

OnSet

TDTPrecedent

MakeDependents
OutOfDate

MakeOutOfDate

RemoveDependent(Self)

destructor TDTPrecedent.Destroy;
begin
 MakeDependentsOutOfDate;
 m_lpdDependents.Free;
 inherited;
end;
...
destructor TDTDependent.Destroy;
begin
 if m_eStatus = DT_UP_TO_DATE then
 { This will make all precedents forget about me. }
 MakeOutOfDate;
 Assert(m_eStatus = DT_OUT_OF_DATE);
 m_lpdPrecedents.Free;
 inherited;
end;

Figure 15: Implementation of sentry destructors. Dependents
become out-of-date to disconnect the sentries.
To implement the second rule, the framework keeps track of
the dependent currently being updated (see Figure 10). In
TDTDependent.MakeUpToDate, the sentry pushes itself onto a
stack, thereby establishing itself as the active sentry. It records its
status as “updating” to detect cyclic dependencies, which would
otherwise cause an infinite loop. It then calls the update procedure
before popping itself off the stack.

The update procedure gathers information from other attributes in the
system, ultimately calling their access methods. Each access method
calls TDTDynamic.OnGet or TDTDependent.OnGet, each of which calls
31 August 2000 Delphi Informant Magazine
TDTPrecedent.RecordDependent. This method looks at the top of the
stack, and establishes a two-way link between the active dependent
and the precedent.

By the time the update procedure is finished, the new value has been cal-
culated, and the framework has discovered and connected all precedents
(see Figure 11).

The interaction diagram shown in Figure 12 illustrates the process
flow that results.
To implement the third rule, the framework
responds when a dynamic attribute is changed
(see Figure 13). TDTDynamic.OnSet calls
TDTPrecedent.MakeDependentsOutOfDate, which
traverses the precedent’s list of dependents, calling
TDTDependent.MakeOutOfDate for each. This
method breaks the two-way link between the
dependent and each of its precedents, and then
calls TDTPrecedent.MakeDependentsOutOfDate to
do the same for indirect dependents. After the mes-
sage has propagated through the dependency net-
work, all direct and indirect dependents are out-of-
date.

The interaction diagram shown in Figure 14 illus-
trates the implementation of the third rule.

When making a dependent out-of-date, it’s essential
that the framework disconnect it from its precedents.
As per the second rule, the dependent will re-dis-
cover its precedents when it’s brought up-to-date, so
it’s unnecessary to retain this information. Further-
more, because the set of precedents may change (as

tes with “A+B” versus “B+C”), it’s not even desirable
the example illustra
to retain this information. Finally, discarding these connections prevents
other precedents from redundantly making an out-of-date dependent
out-of-date.

Taking advantage of disconnection, the framework makes
dependents out-of-date in both TDTPrecedent.Destroy and
TDTDependent.Destroy. When dependents are out-of-date, they’re
disconnected. When objects are disconnected, they can be destroyed
in any order. Thus the framework eliminates one more potential
problem area (see Figure 15).

In Development
Conclusion
Dependency tracking is a powerful mechanism for keeping a system
up-to-date. Unlike the Observer pattern or document/view architec-
ture, this mechanism requires only local code changes. The applica-
tion developer simply identifies dynamic, dependent, and visible
attributes and lets the framework discover the relationships among
them. This localization embraces the concept of encapsulation and
makes maintenance easier. ∆

The project referenced in this article is available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
AUG\DI200008MP.

Michael L. Perry formed Mallard Software Designs, Inc. to practice a new
model of software development. He uses top-down design, patterns, and math-
ematical proofs to ensure the quality and maintainability of code. You can
reach Michael at mperry@mallardsoft.com, or visit the Mallard Web site at
http://www.mallardsoft.com.
Glossary
Dynamic attribute — An attribute whose value can be changed externally at any time.
Dependent attribute — An attribute whose value is determined by an internal update procedure.
Visible attribute — A dependent attribute that affects the user’s view of the system.
Direct dependency — The situation in which a dependent or visible attribute depends upon a dynamic attribute with no intervention.
Indirect dependency — The situation in which a dependent or visible attribute depends upon another dependent attribute.
Cyclic dependency — The situation in which a dependent depends either directly or indirectly upon itself. Because many such situations are
ambiguous, the dependency tracking system identifies them as errors.
Precedent — An attribute upon which a dependent or visible attribute directly depends.
Sentry — An object that performs a task on behalf of a sibling. In this context, dynamic dependent and visible sentries track dependency
relationships on behalf of the attributes.
Update procedure — The procedure that gathers information and calculates the value of a dependent or visible attribute.
OnIdle — An event fired when the application’s message queue is empty. This is a convenient time to bring visible attributes up-to-date.
Encapsulation — The object-oriented concept of hiding data or relationships within an object. Proper encapsulation reduces coupling and
facilitates maintenance.
Access method — A public method used to get or set private data. Proper encapsulation requires the use of access methods.
32 August 2000 Delphi Informant Magazine

http://www.mallardsoft.com

33 August 2000 Delphi Informant Magazine

The API Calls
Windows 2000 / Delphi 5

By Deepak Shenoy

Figure 1: The Open d
An Open Dialog
Using the Windows 2000 Open Dialog Box

W indows 2000 — the operating system we love to hate — is in full swing. Applica-
tions have had to conform to the new user interface and concepts that Windows

2000 introduces: COM+, Active Directory, Kerberos authentication, and more. I won’t
delve into these, however. I’ll limit the discussion to the use of the Windows 2000 Open
dialog box.
There’s a marked change in the appearance of the
Windows 2000 Open dialog box. Figure 1 shows
the Windows 9x version. The sporty, new Win-
dows 2000 version appears in Figure 2. The area
on the left is known as the Places Bar; its buttons
provide one-click access to select folders. If you use
Office 2000, it should look all too familiar. In this
article, we’ll build a component to encapsulate its
functionality, and make it convenient to use.

Calling the Open Dialog Box
The Open dialog box is a part of the Windows
operating system. This means you don’t have to
create a form for this purpose; an API call is
enough. This API function, GetOpenFileName, is
implemented in Comdlg32.dll. In Delphi, you’ll
find the function defined in commdlg.pas. In
Windows 9x, the function expects an argument of
the type shown in Figure 3.

The Open dialog box is displayed when
GetOpenFileName is called. Callbacks are sent to
ialog box of old.
the hook procedure in lpfnHook (if present) when
the user selects a file, changes a directory, loads
the dialog box, etc.

Delphi hides this complexity in its OpenDialog
component (TOpenDialog class). Among other
functions, the component initializes the struc-
ture and handles the messages in the hook proce-
dure. It also sets all necessary flags based on its
property settings.

Windows 2000 introduces an extension to the
argument’s structure (see Figure 4).

The differences are minor. If Flags contains
OFN_EX_NOPLACESBAR, the left bar won’t
appear; otherwise it will. The only other changes
are to set the lStructSize member to the size of
the extended structure, and to set the FlagsEx
parameter.

Unfortunately, TOpenDialog cannot be customized
for this purpose. We have no access to the actual
structure being passed; we can only call Execute.
The component then takes complete control, as it
was designed to. There’s another problem in the
Commdlg.pas definition:

function GetOpenFileName(var OpenFile:

 TOpenFilename):
 Bool; stdcall;

The Windows API function expects a pointer
to the structure TOpenFileName. Borland has
defined the parameter as a var, which allows a
programmer to pass a structure without using
an @ operator, i.e. without passing a pointer
to the structure. Unfortunately, with var param-
eters, the compiler expects you to pass the same
structure, and complains when you try to pass

The API Calls
anything else, including an extension. So we’ll need to redefine
the function as:

function GetOpenFileNameEx(var Open File: TOpenFilenameEx):
 Bool; stdcall;
...
implementation
...
function GetOpenFileNameEx; external 'comdlg32.dll'
 name 'GetOpenFileNameA';
34 August 2000 Delphi Informant Magazine

Figure 2: The Windows 2000 Open dialog box.

tagOFNA = packed record
 // Size of the structure in bytes.
 lStructSize: DWORD;
 // Handle that is the parent of the dialog.
 hWndOwner: HWND;
 // Application instance handle.
 hInstance: HINST;
 // String containing f ilter information.
 lpstrFilter: PAnsiChar;
 // Will hold the f ilter chosen by the user.
 lpstrCustomFilter: PAnsiChar;
 // Size of lpstrCustomFilter, in bytes.
 nMaxCustFilter: DWORD;
 // Index of the f ilter to be shown.
 nFilterIndex: DWORD;
 // File name to start with (and retrieve).
 lpstrFile: PAnsiChar;
 // Size of lpstrFile, in bytes.
 nMaxFile: DWORD;
 // File name without path will be returned.
 lpstrFileTitle: PAnsiChar;
 // Size of lpstrFileTitle, in bytes.
 nMaxFileTitle: DWORD;
 // Starting directory.
 lpstrInitialDir: PansiChar;
 // Title of the open dialog.
 lpstrTitle: PAnsiChar;
 // Controls user selection options.
 Flags: DWORD;
 // Offset of f ile name in f ilepath=lpstrFile.
 nFileOffset: Word;
 // Offset of extension in f ilepath=lpstrFile.
 nFileExtension: Word;
 // Default extension if no extension typed.
 lpstrDefExt: PAnsiChar;
 // Custom data to be passed to hook.
 lCustData: LPARAM;
 lpfnHook: function(Wnd: HWND; Msg: UINT; wParam: WPARAM;
 lParam: LPARAM): UINT stdcall; // Hook.
 // Template dialog, if applicable.
 lpTemplateName: PAnsiChar;
end;

TOpenFilenameA = tagOFNA;
TOpenFilename = TOpenFilenameA;

Figure 3: An argument of this record type must be passed to the
Windows 9x GetOpenFileName API function.
The New Component
TAgOpenDialog is the class we’ll construct (“Ag” is short for Agni Soft-
ware, the company I work for) to extend TOpenDialog. We won’t write
a completely new implementation. A new property, ShowPlacesBar, will
control the display of the Places Bar on the left. The dialog box should
display unchanged in Windows 9x and Windows NT 4.0. First, we’ll
define the component:

TAgOpenDialog = class(TOpenDialog)
protected
 FShowPlacesBar: Boolean;
public
 constructor Create(AOwner: TComponent); override;
 function Execute: Boolean; override;
published
 property ShowPlacesBar: Boolean
 read FShowPlacesBar write FShowPlacesBar;
end;

The ShowPlacesBar property controls the display of the Places Bar.
Let’s see how we can modify TOpenDialog. Looking at the source
TOpenFileNameEx = packed record
 // Size of the structure in bytes.
 lStructSize: DWORD;
 // Handle that is the parent of the dialog.
 hWndOwner: HWND;
 // Application instance handle.
 hInstance: HINST;
 // String containing f ilter information.
 lpstrFilter: PAnsiChar;
 // Will hold the f ilter chosen by the user.
 lpstrCustomFilter: PAnsiChar;
 // Size of lpstrCustomFilter, in bytes.
 nMaxCustFilter: DWORD;
 // Index of the f ilter to be shown.
 nFilterIndex: DWORD;
 // File name to start with (and retrieve).
 lpstrFile: PAnsiChar;
 // Size of lpstrFile, in bytes.
 nMaxFile: DWORD;
 // File name without path will be returned.
 lpstrFileTitle: PAnsiChar;
 // Size of lpstrFileTitle, in bytes.
 nMaxFileTitle: DWORD;
 // Starting directory.
 lpstrInitialDir: PansiChar;
 // Title of the open dialog.
 lpstrTitle: PAnsiChar;
 // Controls user selection options.
 Flags: DWORD;
 // Offset of f ile name in f ilepath=lpstrFile.
 nFileOffset: Word;
 // Offset of extension in f ilepath=lpstrFile.
 nFileExtension: Word;
 // Default extension if no extension typed.
 lpstrDefExt: PAnsiChar;
 // Custom data to be passed to hook.
 lCustData: LPARAM;
 lpfnHook: function(Wnd: HWND; Msg: UINT; wParam: WPARAM;
 lParam: LPARAM): UINT stdcall; // Hook.
 // Template dialog, if applicable.
 lpTemplateName: PAnsiChar;
 // Extended structure starts here.
 pvReserved: Pointer; // Reserved, use nil.
 dwReserved: DWORD; // Reserved, use 0.
 FlagsEx: DWORD; // Extended Flags.
end;

// FlagsEx of TopenFileNameEx.
const OFN_EX_NOPLACESBAR = 1;

Figure 4: This extended record must be passed to the Windows
2000 GetOpenFileName API function.

The API Calls
code in Dialogs.pas, we discover that TOpenDialog has a virtual
Execute function that calls:

DoExecute(@GetOpenFileName);

And DoExecute (not virtual, unfortunately) builds theTOpenFilename
structure, and passes it to GetOpenFileName. DoExecute takes a param-
eter, because the common File Save dialog box has exactly the same
structure passed to it, except the Windows API function is named
35 August 2000 Delphi Informant Magazine

Figure 7: A sample output of the new dialog box.

var
 CurInstanceShowPlacesBar : Boolean;

// Global function.
function OpenInterceptor(var DialogData: TOpenFileName):
 Bool; stdcall;
var
 DialogDataEx : TOpenFileNameEx;
begin
 // Copy the structure to DialogDataEx.
 Move(DialogData, DialogDataEx, SizeOf(DialogData));
 if CurInstanceShowPlacesBar then
 DialogDataEx.FlagsEx := 0
 else
 DialogDataEx.FlagsEx := OFN_EX_NOPLACESBAR;
 // Set the new size.
 DialogDataEx.lStructSize := SizeOf(TOpenFileNameEx);
 Result := GetOpenFileNameEx(DialogDataEx);
end;

function TAgOpenDialog.Execute: Boolean;
begin
 if IsWin2000 then
 begin
 CurInstanceShowPlacesBar := FShowPlacesBar;
 Result := DoExecute(@OpenInterceptor);
 end
 else
 Result := inherited Execute;
end;

Figure 5: Calling GetOpenFileNameEx.

function TAgOpenDialog.IsWin2000: Boolean;
var
 ver : TOSVersionInfo;
begin
 Result := False;
 ver.dwOSVersionInfoSize := SizeOf(TOSVersionInfo);
 if not GetVersionEx(ver) then
 Exit;
 if (ver.dwPlatformId = VER_PLATFORM_WIN32_NT) then
 if (ver.dwMajorVersion >= 5) then
 Result := True;
end;

Figure 6: Testing if a user is running Windows 2000.
GetSaveFileName. The Execute function in TSaveDialog (which is derived
from TOpenDialog) calls DoExecute(@GetSaveFileName).

Here’s where we step in and take control. We override
TOpenDialog.Execute and pass a global function to DoExecute, which
will now get the parameter that GetOpenFileName would have
received. In the global function, we’ll extend the structure and call
GetOpenFileNameEx instead (see Figure 5).

There’s a global variable declared in the implementation section that
offers a little security. This variable, CurInstanceShowPlacesBar, is required
because the global function, OpenInterceptor, has no way to access the
current instance of TAgOpenDialog. We can’t pass a member function
to DoExecute. A global function is different from a class method in that
there is no implicit Self parameter.

We also need to check if the user is running Windows 2000. The
test is shown in Figure 6. We use ver.dwMajorVersion >= 5 because
we want to support further versions of Windows 2000. Include this
component in a package and use it. See Figure 7 for a sample output.
That’s about it. The code accompanying this article contains a
TAgSaveDialog, with some minor modifications.

Conclusion
This implementation isn’t thread-safe. Because it uses global variables,
you can’t have multiple threads create TAgOpenDialog components and
execute them without synchronized access to the global variable. Because
the VCL isn’t thread-safe, and it’s recommended to have user-interface
elements in the same thread, this doesn’t sound like such a bad restriction
(see Effective COM: 50 Ways to Improve Your COM and MTS-Based
Applications, Don Box, ed. [Addison-Wesley, 1998]). The fact remains:
Don’t try to use this component across threads.

It would have been simpler to create this component had Delphi
provided access to the structure being sent to GetOpenFileName —
say through an event called just before calling GetOpenFileName. We
wouldn’t need to go through the rigmarole of the global function and
variable. Most Delphi developers won’t need it, but I would argue that
access to the structure should be available for component developers.

You may use the TAgOpenDialog and TAgSaveDialog in your
applications, commercial or otherwise. Tools like GExperts (http://
www.gexperts.com) provide a way to replace components in an entire
project, so you might want to convert TOpenDialog and TSaveDialog
to TAgOpenDialog and TAgSaveDialog, respectively. This way your
users with Windows 2000 will see the new Open dialog box, without
you having to write a single line of code. ∆

Information regarding the Microsoft Platform Software Development
Kit (SDK) is available at http://www.microsoft.com/msdownload/
platformsdk/setuplauncher.htm.

The files accompanying this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
AUG\DI200008DS.

Deepak Shenoy is the technical director at Agni Software, a startup in Bangalore,
India. Agni Software (http://www.agnisoft.com) builds products and provides ser-
vices in Delphi, focusing on business solutions. Deepak has worked with Delphi
since 1997, his experience largely in n-tier applications using Delphi and COM.
Deepak has been working on emerging technologies such as ADSI, XML, and
Windows 2000. You can contact Deepak at shenoy@agnisoft.com.

http://www.gexperts.com
http://www.gexperts.com
http://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm
http://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm
http://www.agnisoft.com

36 August 2000 Delphi Informant Magazine

New & Used

By Bill Todd

Figure 1: The Insta
Wise InstallMaster 8.0
A Do-it-all Installation Solution

If you need an installation tool that does it all, look no further than the Wise family
of installation products. Wise Solutions offers three different products: InstallMaker 8.0,

InstallBuilder 8.0, and InstallMaster 8.0. These products are at three different price points
with three different feature sets, so you can pick the combination of features that meets
your needs. All three products have the same user interface; only the features vary, so this
review will focus on InstallMaster, the high-end product.
.

l

InstallMaster doesn’t force you to choose
between a fast, easy-to-use, wizard-based inter-
face and a scripting language; both are provided
The interactive interface generates scripts that
you can modify in the script editor, or you can
write the entire installation using the scripting
language if you need to.

When you start InstallMaster, you’re greeted by
the wizard interface shown in Figure 1. Wise
breaks the process of creating your installation
into the six steps listed across the top of the
screen. As you click on each successive step, the
list of options down the left side of the screen
changes. You can use the Next and Back buttons
to move through the screens in typical wizard
lMaster user interface.
fashion, or click directly on the screens you want
to go to, bypassing the ones you don’t need for
the project you’re working on. The Steps menu
choice lets you customize the wizard by selecting
the steps and screens within each step you will
visit when using the Next and Back buttons.

Choosing What Will Be Installed
The first option in step 1 is Files. Using this screen,
you can choose which files will be installed on
the target computer, and how they will be orga-
nized. The lower-left pane provides a tree view
of the destination computer with two branches,
named Application and Windows. The Application
folder is the folder in which the user chooses to
install your application. Windows represents the
user’s Windows directory (regardless of its actual
name). You can create additional folders under
either the Application or Windows folders to hold
the files you are installing.

Once you’ve defined your folder structure, select
the folder whose files you want to specify, then use
the tree in the upper-left pane to navigate to the
folder that contains the files on your computer.
Select files you want to add to the selected destina-
tion folder, and click the Add File button. You
can also select a folder in the upper-left pane,
and click the Add Contents button to have the
entire contents of the folder added to the selected
destination folder, or added as a subfolder beneath
the destination folder.

If you have optional files, you can divide your
installation into multiple components. When you

New & Used
add components, you can specify whether that component will be
installed by default. Each component you add has its own folder tree
in the Files view. Figure 2 shows the Files view after two components,
named Database and Tutorial, were added. This lets you define the
files and folders associated with each component in a single screen.
If you’re installing an empty set of database files, you might want
to make them a separate component, so the user can reinstall the
program files without overwriting an existing database.

One of the great features of the Wise installation products is
SmartPatch. Instead of creating an installation that contains all of
the files in your application, you can create a self-installing patch
file that will update an existing installation. This is an excellent
way to distribute updates on diskette or via the Internet, because
it reduces the size of the distribution file. Distributing patches also
provides security, because the patch cannot be installed by anyone
who doesn’t have the prior version installed.

Creating a patch is easy. First, specify the files in the new version,
just as you would to create a complete installation. Next, select
SmartPatch and enter the directory that contains each of the prior
versions you want to patch. Complete the installation settings as you
would for a full installation, and InstallMaster will generate a patch
EXE that will patch any of the prior versions you’ve specified.

You have the option of including uninstall capability, and will
probably want to do so on your original installation disks. Install-
37 August 2000 Delphi Informant Magazine

Figure 2: The Files screen with multiple components.

Figure 3: The Database Runtime page.
Master will generate the uninstall script for you. You can also add
commands to remove registry entries or files that your application
creates after installation. You can also elect to remove files that
are in use.

Database and Run-time Engines
InstallMaster will also include Visual Basic Runtime, Visual FoxPro
Runtime, the BDE, and Crystal Reports Runtime in your instal-
lation with the click of a mouse. The Windows Runtime option
lets you include DirectX or MFC 4.2. InstallMaster also includes
an option called Database Runtime, shown in Figure 3. This page
allows you to include any of the Microsoft data access technologies
in your installation. Options include MDAC 2.1, ADO, DAO 3.6,
OLE DB 1.1, seven 32-bit ODBC drivers, and four 16-bit ODBC
drivers. Use the lower pane to add any ODBC DSNs you need to
create on the destination computer.

One feature that sets InstallMaster apart is its support for installing
the BDE. It will install both the 16-bit and 32-bit BDE, and it
will install the BDE in any location. It even has an option to let
the user select the installation location. This is perfect for installing
multi-user BDE applications, where you want to install the BDE on
a file server, and have all of the clients share this installation. You can
also install the BDE in one location, and the BDE configuration file
in a different location. Another option lets you create BDE aliases
without installing the BDE. This makes creating installations for
machines where the BDE is already installed a snap.

InstallMaster also lets you change any setting in the BDE configura-
tion file — even if the BDE is already installed on the target
machine. To change BDE configurations settings, simply include
the settings as parameters for any alias you create. The syntax is the
same as that used for the BDE API function DbiOpenCfgInfoList.
For example, to set Local Share and the Paradox driver’s NetDir, use
the following parameters:

\SYSTEM\INIT\LOCAL SHARE: TRUE
\DRIVERS\PARADOX\INIT\NET DIR: %MAINDIR%\BDENET

These lines will set Local Share to True and the NetDir to the
BDENET directory under the user’s main installation directory.

Operating System Setup
Move to step 2, system additions, and you can name the program
group for your application, and list the files to appear as icons in
the group. Choosing Registry provides a dual-pane view of the Win-
dows registry on your computer, and the registry on the destination
computer. You can create registry keys on the destination computer
by entering them manually, by copying them from your registry,
or by importing a registry file. You can also use variables, such as
%MAINDIR%, to insert variable information, such as the path to
the folder where your application will be installed.

The INI Files option allows you to create or update INI files. You
can add, delete, and change sections and entries using fixed values
or variables. The File Types option lets you define associations
between file extensions and the programs that open them. There
is also a Services option that allows you to install Windows NT
services. Other options in step 2 let you add device drivers and
modify autoexec.bat and config.sys. The last option lets you con-
trol whether an installation log is created, where it’s located, and
the name of the file. Because the installation log is used by the
uninstall feature, you don’t want to overwrite the original log

numb

New & Used

Figure 4: The Setup Information screen.

Figure 5: The Password screen.
when installing an update that only replaces a few files, because
this would prevent uninstall from working correctly.

Will Your Application Run Here?
Step 3 in the installation process, user system checks, lets you define
checks on the user’s system, including the minimum Windows or
Windows NT version, screen resolution, color depth, whether a
sound card is installed, and whether WAV or MIDI support is
installed. Each setting can be either required or recommended, and
you can enter the message that will be displayed if the user’s system
doesn’t meet the requirements. You can also require that a previous
version of your application be installed. There are three ways to do
this. First, you can search for one or more files. Second, you can
check for one or more values in one or more INI files. Finally, you
can check for one or more registry entries. You can also use any
combination of these checks.

Controlling What the User Sees
The fourth step in creating your installation is called wizard appearance

and begins by asking you for the title text to display while the
installation is running, and the default directory name into which
your files will be installed (see Figure 4). This is the directory
that corresponds to Application in the Files screen in Figure 1.
38 August 2000 Delphi Informant Magazine
However, you can only enter a directory name here, not a
full path. That creates a problem if you create installations
that must install to a specific directory on a corporate
network. For example, there is no way, using the wizard, to
set the default directory to K:\SALES\APPS\BUDGET. All
you can do is enter a directory name, and, via a checkbox,
choose whether that directory will be created in the root
of C:, or in C:\Program Files. If you need to specify a full
path, you must switch to the script editor and modify the
script the wizard creates. This is an unfortunate shortcom-
ing in an otherwise excellent product.

The Dialogs option in step 4 lets you select which of the standard
dialog boxes the user will see during installation. Other options in
step 4 let you set the screen colors and fonts, and define a list of
billboard graphics that will be displayed during the installation.

Providing Security
Step 5 is titled advanced functionality and provides options
to set passwords, enable online registration, and install Win
CE components. The Password screen in Figure 5 offers
two options for securing your application. The first is a
simple password the user must enter during installation.
The second is serial numbers used as a password.

If you choose serial numbers, once again there are two
options. The first is a series of sequential numbers, any
one of which will be accepted during installation. The
second is a set of randomly generated numbers, any one
of which will be accepted. For sequential serial numbers,
you specify a beginning and an ending value. For random
numbers, you specify a beginning and an ending value,
and the number of serial numbers you want generated
within that range. For example, you might set the starting
value to 1000000 and the ending value to 9999999 and
request 1000 random serial numbers in this range. While
any one of the 1,000 serial numbers will work, the chance
of someone guessing one of the 1,000 valid values out of
nine million possibilities is quite small. If you use serial

ers, an export option lets you export the list of valid num-

bers to a text file that you can use to print labels or import into
a database.

You can use the Online registration option by setting up a Web site to
accept HTTP Post commands containing registration information
in a predefined set of fields. By entering the name of an INI file,
you can also store the registration information on the user’s system
for future use. For example, if the user purchases an update, the
registration screen in the update installation will automatically be
filled in using the information from the INI file created by the
original installation.

Distribution Options
The sixth and final step controls the distribution settings, beginning with
media options. If you will distribute your application via the Internet or
a corporate intranet, or if users will install from a file server, choose Single

File Installation. InstallMaster will create a single EXE file containing your
entire application. To distribute your application on media, choose Media

Based Installation and select the type of media. InstallMaster supports
5.25” floppy disks, 3.5” 720MB and 1.44MB diskettes, 100MB Zip
disks, 120MB LS-120 disks, CD-ROM, DVD-ROM, and custom sizes.
If you choose custom, you can enter any media size.

type code as you would in a traditional programming

New & Used
Choose Build Settings to set a variety of options, including whether
you are deploying to the Windows 3.1 or Windows 95/98/NT
platforms. Perhaps the most important setting on this screen is
the Maximum Compression checkbox. This option is unchecked by
default to reduce the time required to compile your installation
during development and testing. You should always check this
option before the final build to make the installation files as small
as possible. InstallMaster supports silent installations by starting
the installation EXE with the /s command line switch. Selecting
No Reboot Message During Silent Installs will make a silent installa-
tion completely silent even if a reboot is required. Replace In-Use

Files controls whether a reboot will be used to free files that are in
use when the installation is run. You can also choose to have the
compressed installation files in Zip-compatible format, specify the
name for the installation EXE file, enter the location of the icon
file for the installation EXE, supply the path to any custom dialog
boxes you created with the InstallMaster dialog editor, and select
a temporary directory other than the Windows \temp directory to
be used when creating your installation.

If you plan to distribute your application over the Internet or a
company intranet, InstallMaster offers another approach, called
WebDeploy. Using WebDeploy, the user downloads and runs a
small program that checks the user’s configuration, determines
which files need to be downloaded from the server, downloads
them, and completes the installation. WebDeploy works well with
unstable network connections, such as dial-up lines, because it will
automatically resume an interrupted installation without having
to restart the download from the beginning.

WiseUpdate is a companion technology that lets you install a small
update program with your application. Based on your settings, this
program will periodically offer the user the option to check for
updates on the Internet or your intranet. If an update is found,
WiseUpdate downloads and installs it.

Other Ways to Create an Installation
If you want to create your installation the easy way, InstallMaster
offers two wizards that will do just that. The Run Application and
Watch For Loaded Files wizard does exactly what its name implies.
You start the wizard, run your application, make sure you use all of
the features that will load additional files, such as DLLs or ActiveX
39 August 2000 Delphi Informant Magazine

Figure 6: The script editor.
controls, then let the wizard build an installation that will install
your application’s EXE and all of the files it used.

The second wizard is the Setup Capture wizard. Setup Capture
creates a snapshot of your system before and after an application
has been installed and creates a script to replicate the installation,
including registry entries. Another time-saving feature is the abil-
ity to create installation templates. If you find yourself setting the
same options in many of the installations you create, start with
a blank project, change the settings that are common to many
installations, then save the installation script to the Templates
directory. From then on, your template will be listed in the New
Installation dialog box that appears when you choose File | New

from the main menu.

If you need installation features that you cannot get using the
installation wizard, you can use the script editor to modify a script
created by the wizard, or write your own from scratch. The script
editor provides an integrated debugger and a dialog box editor
for creating custom dialog boxes. One of the unique features of
the script editor, shown in Figure 6, is that you don’t need to

InstallMaster 8.0 does it all. Whether you are distributing com-
mercial or corporate applications over a LAN, WAN, the Internet,
or on media, InstallMaster 8.0 provides the right combination of
distribution and update features to meet your needs. No matter
how large or small your applications are, this is the only installation
program you’ll need.

Wise Solutions, Inc.
5880 N. Canton Center Rd., Suite 450
Canton, MI 48187

Phone: (800) 554-8565
Web Site: http://www.wisesolutions.com
Price: US$795
environment. Instead, the script commands are listed in
the left pane of the editor, and you add them to your
script by drag-and-drop. When you drop a new com-
mand on your script, a dialog box opens automatically
to prompt you for any variable information the com-
mand requires. This approach works well and virtually
eliminates syntax and typographical errors. The scripting
language also lets you call any Windows API function,
call functions in your own DLL, or run an executable as
part of your installation.

If you distribute applications internationally, Install-
Master provides multi-language support, including sup-
port for multi-byte character sets. SMS support is also
included if you use Microsoft’s System Management
Server to manage a large number of PCs.

Conclusion
InstallMaster 8.0 does it all. Whether you’re distributing
commercial or corporate applications over a LAN,

http://www.wisesolutions.com

New & Used
WAN, the Internet, or on media, InstallMaster provides the right
combination of distribution and update features to meet your
needs. The general rule in software is that the more powerful the
product the more difficult it is to use, but InstallMaster is the
exception. I can do 99 percent of my installations using the instal-
lation expert alone. When I do have to modify an installation in
the script editor, the list of commands, combined with drag-and-
drop editing, makes it easy to enhance a script and get it right the
first time. No matter how large or small your applications are, this
is the only installation program you’ll need. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, including Delphi: A Developer’s Guide. He is a Contributing Editor
to Delphi Informant Magazine, and a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a member of Team Borland, a
nationally known trainer, and has taught Delphi programming classes across the
country and overseas. He can be reached at bill@dbginc.com.
40 August 2000 Delphi Informant Magazine

TextFile
Delphi in a Nutshell

I always think of O’Reilly’s ...in a Nutshell
books as the motorcycle repair books of
the software world. These books provide
clear, to-the-point, and in-depth reference
information. If you’re wondering about the
motorcycle repair book reference, you haven’t
had the pleasure (or misfortune?) of owning
a motorcycle. Publishers like Clymer offer
books for your specific machine that provide
in-depth, step-by-step procedures for many
of the common maintenance and repair tasks
you will need to perform.

In the past, O’Reilly has concentrated on
subjects like Unix, C/C++, Java, Windows
NT, and Web technologies — so seeing
the first Delphi-related ...in a Nutshell book
is cause for celebration. I was even more
excited to find that Ray Lischner is the
author. With the possible exception of the
original beta manuals for Delphi 1, I con-
sider Lischner’s Secrets of Delphi 2 [Waite
Group Press, 1996] the most inspiring
Delphi book I ever read. After going through
that tome, I got a much better understand-
ing of how Delphi handles forms, objects,
and the like, and I was able to use an archi-
tecture in two major applications that resem-
bles the way Delphi handles its components
and deals with properties.

Before you run out to purchase Delphi in
a Nutshell, however, you must know that it
doesn’t discuss the VCL that is a large part
of what makes Delphi ... well ... Delphi.
It’s a disappointment that this information
is excluded. However, once you start going
through all the information, it becomes clear
that a comparable VCL in a Nutshell would
probably be a 3,000-page book (or more). As
it is, Delphi in a Nutshell — which discusses
“only” the Object Pascal language, compiler-
related information, and the system libraries
— is over 550 pages.

The Clymer manual that came with my
Kawasaki EX500 spends no less than four
41 August 2000 Delphi Informant Magazine
pages discussing the various designs and uses
of nuts, bolts, washers, screws, snap rings,
and the tools you need to deal with them.
Likewise, Delphi in a Nutshell starts with
a chapter that discusses Delphi Pascal. The
nuts and bolts of the language are described
in detail, including units, programs, pack-
ages, data types, variables, I/O, exception
handling, and the like.

The second chapter discusses the Delphi
Object Model; don’t confuse the name of
this chapter with the VCL hierarchy. The
chapter discusses classes and objects (including
the VMT structures, dynamic method calling,
etc.), interfaces, the life-cycle of objects, refer-
ence counting, messages, and memory man-
agement. Although it seems the information
to this point targets novice Delphi program-
mers, the reality is that there is a lot of
in-depth information of which you are prob-
ably not aware unless you took the time to
dissect the system units as Lischner has. For
example, when discussing memory manage-
ment, the author describes how to override the
NewInstance system procedure to create alter-
nate memory allocation algorithms, and points
to some interesting behavior of components
(or forms) when freeing “owned” components
that are referenced in the published section.

If the first two chapters provide in-depth
information about subjects with which many
of us are familiar, Chapter 3 dissects and
explains a subject that usually isn’t discussed:
RTTI. The structure of a VMT is examined,
followed by detailed information of what kind
of information is available for the different
things you can declare in the published sec-
tion of a class. The undocumented typinfo.pas
unit is explained as well. The chapter also
discusses VMT vs. DMT tables, initialization
and finalization, and interfaces.

Chapter 4 is the last “non-reference” chapter
in the book. And what a chapter it is! Lischner
discusses concurrent programming, the basics
of processes and threads are introduced, and
the common problems of multi-threaded pro-
gramming (race conditions and deadlocks) are
discussed, with simple suggestions for ways to
overcome these issues. Elements like a mutex,
semaphore, critical sections, synchronization,
and the like are introduced.

Next, Delphi’s TThread class is introduced, and
a discussion about thread local storage and
inter-process communication is included. The
chapter ends with the introduction of a Futures
class that can be used to simplify concurrent
programming. Of all the Delphi books and
articles I’ve seen, this chapter provides the most
complete and useful information about concur-
rent programming. For my needs, this chapter
alone is worth the price of admission.

The reference chapters include a long chapter
devoted to the language, including every key-
word, class, function, and variable supported
in the “system” RTL (including system.pas
and sysinit.pas). Every entry in the chapter

TextFile
includes a “Syntax,” “Description,” and “See Also” section, and
when appropriate, an “Example” and “Tips and Tricks” section. For
example, the TextFile type entry (used to define a text file in Delphi)
includes a tips-and-tricks section that shows the internal structure of
the type, and discusses the issue of writing a custom text file driver.
The example writes such a driver that maps a stream to a text file
and allows you to writeln and readln from any TStream — be it in
memory, disk, or elsewhere — as if it were a standard text file.

Additional reference chapters cover system constants, operators,
and compiler directives, as well as an appendix that documents
the command-line tools, including dcc32, brcc32, the DFM con-
verter, tdump, the object file dumper, and the IDE itself. Surpris-
ingly, tlibimp (the most important command-line tool in my
opinion) isn’t mentioned.

The last appendix documents the sysutils.pas unit. This is not an
integral part of the system RTL, but it’s an important addition used
by almost every Delphi application.

This book is a great reference, with some excellent non-reference chap-
ters. For advanced Delphi developers, the chapters about RTTI and
concurrent programming provide important information that is hard to
come by. For programmers moving to Delphi after stints as C, C++, or
Java programmers (and there will probably be a nice amount of those
when Delphi’s Linux version appears), Lischner includes comparisons
between elements in these languages and their Delphi counterparts.

My gripes are small and insignificant. I would have loved to see the
same categorical separation of functions in the language reference
chapter that is used for the sysutils.pas appendix and, although a bit
out of the scope of the book, a chapter about the classes.pas unit
would have been appreciated.

This book is another masterful tome from Lischner. It includes so
much in-depth, undocumented information, that it earns a place
of honor next to the all-time great Delphi books every advanced
programmer should own.

— Ron Loewy

Delphi in a Nutshell by Ray Lischner, O’Reilly & Associates, Inc.,
101 Morris St., Sebastopol, CA 95472, http://www.oreilly.com.

ISBN: 1-56592-659-5
Price: US$24.95 (561 pages)
42 August 2000 Delphi Informant Magazine

http://www.oreilly.com

Best Practices
Directions / Commentary
Standards and Conventions

Coders love to code. The profession is difficult enough that those who try to become programmers simply because
it’s a “good job” usually don’t last long. They switch to basket weaving, lion taming, politics, or something else

requiring a little less skill, courage, or commitment. You have to really love coding to invest the necessary time and
energy to program well, as well as endure the inevitable aggravation that comes with the learning curve.
For this reason, when coders confront a challenging problem, we tend
to jump right in and gleefully figure out our own “solution.” Many
times, however, we end up spending hours and hours on an algorithm
that has already been written, i.e. “re-inventing the wheel.”

Although educational, and possibly fun, to adopt the “Not Invented
Here” syndrome and make sure that every bit of code is completely
original (as if our needs are completely unique and nobody before
in the history of programming ever had to write a procedure or
function addressing them), it boils down to a colossal waste of time if
the algorithm already exists, has been tested, and is available for the
taking. Adapting existing code for one’s own use has been called code
reuse of the highest order.

In accounting circles, some people use the acronym OPM (Other
People’s Money), which they like to use to make money for them-
selves. In the programming arena, we should adopt a similar fondness
for using OPC (Other People’s Code).

For example, you may need to write a sorting algorithm. Should you
write it yourself “from scratch” so to speak, or see if you can use someone
else’s code? The answer depends on whether you’re coding for coding’s
sake, or if your focus is to get the work done in the most efficient
manner. I’ve written several programs using string grids. In many cases
I wanted to allow the user to sort by any column, ascending or descend-
ing. I suppose I could have written the sorting algorithm myself, but
as I was more interested in getting the program done than delving
into the intricacies of sorting, I searched on the newsgroups for sorting
algorithms. It didn’t take me long at all to find one that somebody said
they had “slapped together” (some Delphi guru, obviously) that I pasted
into my program, modified a little to fit my particular situation, and
voilà! Who knows how much time it saved me? Time I could then use
designing my next software masterpiece!

Besides searching the newsgroups for algorithms, there are many Delphi
publications full of example code, as well as numerous Web sites
devoted to Delphi, with gobs of Delphi code samples. Both Delphi Infor-
mant Magazine (http://www.DelphiZine.com) and The Delphi Magazine
(http://www.itecuk.com/delmag/index.htm) are chock full of good code.
There are also dozens of Delphi books full of example code (search for
“Delphi” on Amazon.com [or ComputerBookstore.com]). For Delphi-
centric Web sites, go to http://www.undu.com (an electronic Delphi
magazine in its own right) and follow its Delphi Links link.

Another benefit of using existing code, especially from “official”
sources such as publications, is that the code usually adheres to
Delphi/Pascal conventions. What’s the benefit of that? Isn’t program-
ming about individuality, freedom, the right to code things however
you want (as long as it works)? Well ... if you perform an operation
that’s normally done another way by the Delphi community, or name
43 August 2000 Delphi Informant Magazine
a variable something unusual, it will be confusing to other program-
mers who must maintain your code.

Of course, if you’re writing programs for yourself, and are certain that
nobody else will ever see the code, you’re welcome to code them any
way you want. Even then, you can do yourself a favor by following
standards and conventions — even if they’re your own conventions.

For example, Object Pascal keywords should be in lowercase, e.g.
for, begin, with, if, etc., and class names should begin with an
uppercase T. And you should follow some type of indenting rule:
two spaces (not a tab) is standard. A good source of Delphi/Pascal
conventions (other than the Delphi source code itself) is Chapter
6, “Coding Standards Document,” in Delphi 5 Developer’s Guide by
Steve Teixeira and Xavier Pacheco [SAMS, 2000]. It’s available online
at http://www.xapware.com/ddg.

It is also very helpful to adopt a component-naming convention. If you
name one button ButtonClose, another SaveButton, another as the default
Button1, and another as Post, it makes it more difficult — for one thing
— to locate your various buttons in the Object Inspector. The January,
1997 issue of Delphi Informant Magazine contained an article by Mark
Ostroff, “What’s in a Name?” on component-naming conventions. If
everyone were to follow these suggestions, it would help greatly in seeing
at a glance what type of component is being referred to in code. As an
example of what not to do, I have seen a TQuery component that was
given the name QueryUpdate. And it wasn’t an UpdateQuery component!

Will this stifle your need for expression through code? Not at all; fol-
lowing conventions will simply help you apply your brainpower and
creativity to the truly unique aspects of your project. The “standard”
parts will be easily recognizable, and require less of your attention.
Unorthodox coding practices only confuse and aggravate.

The more often standards and conventions are adhered to, the easier it
will be for the Delphi programming community at large to understand
— and yes, reuse — each other’s code. This will make all of us more
productive and successful in our endeavors to be the world’s greatest
community of software developers, using the world’s greatest software
development tool. ∆

— Clay Shannon

Clay Shannon is a Delphi developer for eMake, Inc. in Post Falls, ID. Having visited 49
states (all but Hawaii) and lived in seven, he and his family have finally settled in northern
Idaho, near beautiful Lake Coeur d’Alene. The only spuds he has seen in Idaho have
been in the grocery, and most of those are from Oregon and Washington. Clay has been
working (almost) exclusively with Delphi since the release of version 1, and is the author
of Developer’s Guide to Delphi Troubleshooting [Wordware, 1999]. You can reach him at
BClayShannon@aol.com.

http://www.DelphiZine.com
http://www.itecuk.com/delmag/index.htm
http://www.undu.com
http://www.xapware.com/ddg

File | New
Directions / Commentary
Open Source and the Delphi Community

Open source. No doubt the expression brings a sense of excitement and anticipation to some, fear and loathing
to others. But what does open source mean? In the broadest sense, it could be interpreted as software whose

source code is “open” or generally available for study. However, the various interpretations of what open source
means in the Linux community (and elsewhere) have led to different understandings, definitions, and licenses.
We’ll begin with a brief history of the open-source movement, review some of the licensing issues, and consider
the implications for Delphi.
The Nature and Development of Open Source
As a means of developing and distributing software, it has been
around for a long time — much longer than the expression “open
source.” In the early days of the Internet, the idea of “free software”
was popular among developers. That spirit has continued to this day,
with developers publishing the code to their software, and people
sharing code in newsgroups, list servers, and on message boards.
The Linux movement (see my three recent columns on Delphi and
Linux), based on an operating system that was completely open
source from the beginning, was a great catalyst for the movement.

A specific Open Source Initiative was organized in 1998. Their
Web site (http://OpenSource.org) presents an open-source philoso-
phy, some history, a particular open-source specification, and more.
This approach is closely aligned to one of the major licenses, GNU,
which we’ll discuss presently.

Not surprisingly, OpenSource.org views open source as the future of
software development, an approach “whose time has finally come.”
In tracing its history, they point out that “for twenty years [the open
source approach] has been building momentum in the technical
cultures that built the Internet and the World Wide Web.”

But what is open source all about? The following argument from
OpenSource.org explains how open source works to produce more
robust software in less time: “The basic idea behind open source is
very simple. When programmers on the Internet can read, redistrib-
ute, and modify the source for a piece of software, it evolves. People
improve it, people adapt it, people fix bugs. And this can happen at
a speed that, if one is used to the slow pace of conventional software
development, seems astonishing.”

A major exposition of open-source philosophy, “The Cathedral
and the Bazaar” by Eric S. Raymond (http://www.tuxedo.org/~esr/
writings/cathedral-bazaar/cathedral-bazaar.txt), includes this argu-
ment in support of open source: “Given a large enough beta-tester
and co-developer base, almost every problem will be characterized
44 August 2000 Delphi Informant Magazine
quickly and the fix obvious to someone.” He goes on to restate
it in less technical language: “Given enough eyeballs, all bugs are
shallow.” This seminal essay by one of the prime movers in the
open-source movement is a must-read for anyone who wants to
get a good sense of how the movement evolved, as well as its
major strengths.

Of Licenses, Left and Right
As in the world of politics, the open-source movement has its left
wing and right wing, both of whom would claim an exclusive
understanding of the word “freedom.” We’ll examine two of the
popular licenses: the GNU General Public License (GPL) and the
Mozilla Public License (MPL). Going back to the late 1980s, the
former license is quite popular with many in the open-source move-
ment, particularly those connected with Linux development. A col-
league of mine in Project JEDI described this type of licensing in
these words: “GPL is ‘copyleft,’ which means if you compile GNU-
licensed code in a project, all other code in the project must be
GNU-licensed also. So GNU-licensed code is not really an option
for, say, a software house that sells the binaries at one price and
the binaries plus [the] source at another (higher) price. Nor is it an
option if you want to use the GPL code but don’t release your entire
source code to GPL.” She concluded by informing me that “this is
known on the boards as ‘viral licensing.’” You can read a critique
of GPL at http://www.gnu.org/copyleft/gpl.html. When I examined
the actual GPL license itself, I found the following definition of the
source code that you must redistribute if you use any source code
that is GPL-licensed: “For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable.”

The implications for Delphi developers are obvious. In the most
literal interpretation, you would be required to make available the
source code to portions of the Visual Component Library (VCL)
you used in an application. This would be patently illegal, unless,
of course, Inprise were to release the VCL under GNU! While

http://www.tuxedo.org/~esr/writings/cathedral-bazaar.txt
http://www.tuxedo.org/~esr/writings/cathedral-bazaar.txt
http://www.gnu.org/copyleft/gpl.html
http://OpenSource.org

File | New
GPL-licensed software would be problematic for Delphi develop-
ers, there are other more appropriate licenses. MPL, which we
decided to use in Project JEDI, is a good example of a less restric-
tive approach. With MPL you can mix open source and non-open
source code in the same project. Compare the following excerpt
from MPL to the previous GPL statement: “Any Modification
which You create or to which You contribute must be made avail-
able in Source Code form under the terms of this License either
on the same media as an Executable version or via an accepted
Electronic Distribution Mechanism to anyone to whom you made
an Executable version available.” So, you’re only required to make
available the code that you write.

Open Source in Delphi and Commercial Software
Netscape was the major force in developing MPL. Its decision to
release the code to its browser became a major catalyst for the
open-source movement. Of course, not everyone was overjoyed by
the move to promote an open approach to software development.
You might be wondering how Microsoft, for example, reacted to all
of this. To satisfy your curiosity, I suggest you take a look at the
“Halloween Papers” on the OpenSource.org Web site. These articles,
written by Eric S. Raymond, are based on internal memos leaked by
employees at Microsoft. Other companies, like Inprise, have shown a
genuine interest in the open-source approach. Some, but not all, ver-
sions of Delphi include the source code for the VCL. Late last year,
after a period of confusion and concern, Inprise announced that it
would release InterBase to open source. And there are developments
in the larger Delphi community.

Delphree: The Delphi Connection
The central location for Delphi open-source projects is Delphree
(http://delphree.clexpert.com/pages/initiative.htm), where you can
find information and links to the major Delphi open-source initia-
tives. Included are some of the Pascal links I’ve discussed in
past columns, such as the Free Pascal Compiler and the Lazarus
Project. Delphree is a close partner with Project JEDI. It has links
to many Project JEDI projects, including the JEDI Component
Creator, the JEDI Dolphin educational project, and the JEDI
Program Editor. There are also links to JEDI’s API translation
projects, its utility library, and its component projects.

Delphree also has links to several well-known Delphi open-source
initiatives, including Gerald Nunn’s GExperts (http://www.
gexperts.org) and Chad Hower’s Winshoes (http://www.pbe.com/
Winshoes/). Both products (projects is probably a better term)
have had interesting histories. Winshoes is an Internet library that
was started as shareware in 1995. It later became part of two
different commercial libraries, and was finally released as freeware
and an open-source project in 1998.

GExperts is a series of Delphi IDE enhancers and programming
tools. Developers are encouraged to download the source code,
submit bug reports or fixes, and create new features for inclusion in
the GExperts distribution. In 1998, Gerald turned the project over
to Erik Berry, allowing him to make it open source to speed develop-
ment, and further enhance the quality of its experts. Gerald shared
the following observations with me. To be successful he felt that an
open-source project should have the following characteristics:
1) possess an existing, working code base;
2) possess a strong, capable administrator;
3) not be too large in scope; and,
4) have a target market that includes developers.
45 August 2000 Delphi Informant Magazine
He was quite candid in his assessment of open source, indicating
that he thought it was “more hype than reality,” and that he didn’t
think it would “supplant commercial software development any
time soon.”

While the two Delphi open-source projects I mentioned have been
around for a while, others are in an early stage of development, so
I expect to revisit this topic. In the meantime, I’d like to hear from
readers who have been involved with open-source projects, and
hear your views and experiences. Until next time ... ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applications
with the Borland languages for more than 10 years. He has published a number of
articles in various technical journals. Using Delphi, he specializes in writing custom
components and implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at acmdoc@aol.com.

http://delphree.clexpert.com/pages/initiative.htm
http://www.gexperts.org
http://www.gexperts.org
http://www.pbe.com/Winshoes/
http://www.pbe.com/Winshoes/

AN INFORMANT® COMMUNICATIONS GROUP PUBLICATION

Cross-platform Controls

Is Linux Ready for Delphi?

An Interview with R&D Leaders:
Michael Swindell and Chuck Jazdzewski

August 2000

®

w w w. D e l p h i Z i n e . c o m

™

™

A Special Supplement on Delphi for the Linux Platform

The
Dish on

Kylix

The
Dish on

Kylix

THE DISH ON
You could not step twice into the same river; for other waters are ever flowing
onto you.
— Heraclitus (c.540-c.480 B.C.), On the Universe

At the Threshold
If you’re a hard-core Delphiphile, as I am, there’s a good chance you’re reading this
at the 11th annual Borland Conference in San Diego, California. And you’ve also
no doubt heard of a “secret” project named Kylix — the effort to bring Delphi and
C++Builder to the Linux platform. So you know these are heady times. Its cross-plat-
form nature makes Kylix far more than yet-another RAD environment; it’s a unique
opportunity for Borland and its Windows — and soon Linux — customers.

In short, it hasn’t been this exciting to be a Delphi developer since Delphi 1 shipped.

Therefore, we’re especially proud to be able to bring you some very early Kylix cov-
erage, including a look at the first Kylix custom control (built by Kylix R&D team
member Robert Kozak) and its underlying code.

Perhaps the most important thing right now, however, is orientation. The questions
are myriad. Why port Delphi to Linux? What will Kylix be good for? What are the
benefits and pitfalls of Linux? Will Delphi for Windows be left behind? There’s a lot
to get your mind around, and opinions in the Delphi community run the gamut from
euphoric to paranoiac.

We have two offerings in this regard. First, well-known Borland Engineer Danny
Thorpe does an outstanding job of putting Linux and Kylix into perspective — dousing
giddy exuberance and quelling baseless fears in equal measure. Danny is an accom-
plished author, having written the classic Delphi Component Design [Addison-Wesley,
1997], and is experienced and clear-headed enough to separate hyperbole from fact
and write about them clearly.

We’ve also had the good fortune of interviewing two senior members of the Kylix
R&D team: Michael Swindell and Chuck Jazdzewski. Michael is a Director of Product
Management, and director of the Kylix Project; Chuck was one of the two original
developers of Delphi, is Chief Architect of Kylix — and filled the shoes of legendary
Anders Hejlsberg as Chief Architect of Delphi.

Kylix is nothing less than a bridge to the Linux/Unix programming world. It’s a two-way
bridge, as well, so we can expect an influx of Linux developers who will see Kylix not
only as the best development environment for Linux, but also as their portal to Windows.
I don’t know which prospect is more exciting; fortunately, we don’t have to choose.

Delphi Informant Magazine is committed to covering Kylix to the extent that you,
the reader, are interested in hearing about it. Online surveys from our Web site (http://
www.DelphiZine.com) indicate strong interest, but I want to be sure we’re on the right
track. This is an important crossroads for the Delphi community, so please let me hear
from you.

How important is Linux and Kylix to you?

Thanks for reading.

Jerry Coffey, Editor-in-Chief
jcoffey@informant.com

SYMPOSIUM
i THE DISH ON KYLIX
Informant Communications Group, Inc. assumes no responsibility whatsoever for
the uses made of any software code in this issue, whether modified or not. Infor-
mant Communications Group, Inc. will not be liable for special, incidental, conse-
quential, indirect, or other similar damages, even if we have been advised of the
possibility of such damages. In no event will our liability for any damages to you
or any other person ever exceed the price paid for your subscription to Delphi Infor-
mant Magazine, regardless of any form of the claim. Editorial contained within
does not necessarily reflect the opinions of Informant Communications Group, Inc.
Informant Communications Group, Inc. assumes no responsibility for the products
or services advertised within this publication.

Copyright©1995-2000, Informant Communications Group, Inc. All rights reserved.
No part of this publication may be reproduced in any way without the written con-
sent of Informant Communications Group, Inc. Delphi Informant Magazine is a
publication of Informant Communications Group, Inc. and is not sponsored
by or affiliated with Inprise Corporation. Inprise Corporation is not responsible
in any way for the editorial policy or other contents of this publication.

Informant is a registered trademark of Informant Communications Group, Inc., Elk
Grove, California. Delphi is a trademark of Inprise Corporation. Windows is a trade-
mark of Microsoft Corporation. All other products mentioned within are trademarks
of their respective owners.

ii Is Linux Ready for Delphi?

— Danny Thorpe
Our favorite IDE is about to be launched
on an entirely different platform, so it’s
only natural there are many questions
and concerns. Borland R&D Engineer
Danny Thorpe allays fears, cuts through
the religious and political haze, and puts
Kylix — and its place on Linux — into
perspective.

v Cross-platform Controls

— Robert Kozak
So many “firsts”! Robert Kozak gives us
our first look at some Kylix source code.
And guess what? It looks awfully famil-
iar — which is, of course, the point. It’s
also the very first custom control written
in Kylix.

xi Some Q&A with R&D

It’s the Delphi Informant Magazine inter-
view with two senior members of the
Borland research and development team
working on the Kylix Project: Michael
Swindell and Chuck Jazdzewski.

Special Supplement to
Delphi Informant Magazine

August 2000

The Dish
on Kylix
An Early Look at
Delphi for Linux
August 2000

THE DISH ON

Kylix / Linux / Windows
Is Linux Ready for Delphi?
Fears, Misconceptions, and Misplaced Euphoria
ii

By Danny Thorpe
C
hange is a great way to polarize any community. It should come
as no great surprise that when Inprise announced plans to develop
RAD tools for the Linux platform, the responses from the Borland
developer community were stereo cries of “Oh Yes!” and “Oh No!”

with a background channel of “uh, what?”
I’d like to address some of the commonly expressed fears, misconceptions, and
even misplaced euphoria I’ve heard from various quarters since the announce-
ment. These are my personal opinions, not Borland/Inprise company policy. The
questions may be paraphrased from actual conversations with actual customers,
and my responses may contain actual opinions and/or sarcasm. Be prepared to
wash your eyes out with soap. Safe harbor statement: Forward-looking statements
are the fantasy we endeavor to make reality. If you buy high and sell low, well,
that’s pretty dumb isn’t it?

Why Linux? Why not BeOS, or Mac OS10, or Solaris, or <your pet OS here>?
Linux was the fastest-growing OS in commercial installations in 1998 and 1999,
and those commercial installations are buying every means of support and tech-
nology they can find. Even when the software can be obtained for free (or perhaps
because of it), corporations buy support. It makes perfect business sense to spend
money to protect and fortify your mission-critical and business-critical systems. It
doesn’t matter to your business that the stuff running your critical systems is a free
download — except when it’s 100,000 times cheaper than the alternatives. (Some
of the “big iron” Unix OS licenses cost hundreds of thousands of dollars a year,
every year. Linux runs on the same hardware, at the cost of a free download, or
less than $100 for shrink-wrap retail. You do the math.)

From those Linux growth numbers, I seem to recall that Windows NT was still well
ahead of Linux in terms of installed base (like 45 percent vs. 15 percent), and Windows
NT grew a healthy amount, too. I believe Linux’s growth is due more to cannibalizing
the traditional Unix installed base (Solaris or HP Unix converting to Linux) than to
Linux taking over the Windows NT market. Unix folks tend to be more comfortable
switching between flavors of Unix than switching to NT. People who choose NT for
their servers do it for the Microsoft name and perception of corporate stability and
safety of investment. They aren’t likely to move from NT to Linux anytime soon.

I’m not really that interested in where Linux’s growth is coming from. Linux
is the fastest growing OS (albeit starting from zero), and it’s the only Unix
flavor showing any growth at all.

Why would anyone pay money for development tools for a “free software” OS
like Linux?
On first blush, the notion of taking a commercial product like Delphi to the so-called
“free software” Linux platform sounds crazy. Why would anyone pay money for
Linux development tools when Linux ships with a free built-in C compiler?

Answer: Quality, features, support, and — most of all — choice. Linux is about
choice. Any Linux advocate who says Delphi isn’t welcome in the Linux space is
a hypocrite. Some people feel that commercial software for Linux is long overdue.
Others feel strongly that commercial software containing proprietary technology
should be burned at the stake. Regardless of your position in that particular jihad,
you have to admit that choice of development tools (even those you wouldn’t
choose for yourself) is better for the Linux community than a police state model
THE DISH ON KYLIX August 2000

THE DISH ON
where one tool should be good enough for everyone, and nothing
else is permitted.

Have you actually evaluated the benefits of Linux?
Yes, we have. We wouldn’t have embarked on the Kylix project if we
didn’t feel there was a significant business opportunity in that space.
We investigate lots of technology ideas for market opportunities all the
time, but we only jump in to make a product where the numbers indi-
cate we have a better than good chance of making a home-run product.

Microsoft has kept Borland/Inprise alive. Microsoft gave Borland/-
Inprise millions.
Whoa, slow down there, Tex. Although the success of our Win-
dows development tools is certainly linked to Microsoft’s success in
making Windows the dominant PC operating system, that’s the limit
of our endearment to the Microsoft Marketing Machine. Borland
identified Windows as an emerging market way back in the early
1990s and built tools to capture revenue from that market. We’re
now doing the same for Linux, but this time we’re starting earlier in
the OS emergence cycle. (We almost missed the boat for Windows.)
Starting earlier involves greater risk, but also offers greater rewards.
More on that later.

The $125 million was a settlement for a patent infringement lawsuit
between Microsoft and Borland. As a settlement, one could reasonably
assume it is less than what Microsoft feared could be awarded at the
end of a long and expensive legal battle. Borland/Inprise executives
made public remarks at the time about the irony that Microsoft “blood
money” would be poured into making products that did not support the
Microsoft agenda, specifically: CORBA, Java, and Kylix.

Borland RAD tools for Linux! This is so cool! It’ll destroy Windows!
Linux rules the world!
That’s nice. Now please enter your credit card number and your lan-
guage preference: Java, Delphi, or C++? Would you like CORBA
with that?

Okay folks, here’s a radical concept to tattoo on your eyelids: “Our
success does not require the destruction of Microsoft.” Say it out
loud. Say it slowly. Lather, rinse, repeat. Linux is succeeding in
spite of the Microsoft monopoly. That’s what makes Linux interest-
ing. If there were no Microsoft, if Linux were the only OS in town,
we’d have no reason to get excited about Linux, would we?

Linux can continue to grow by leaps and bounds and be successful
in the presence of Microsoft. Borland tools for Linux can be a finan-
cial success, even if Linux always runs a distant second to Windows
NT, and even if Linux never breaks into the desktop OS market.
“There can be only one” doesn’t apply. Borland’s interest in the
Linux market isn’t that Linux will replace the Windows market, but
that Linux is a market in addition to the Windows market.

There are so many Linux flavors, e.g. Red Hat, Corel, Slackware,
SUSE, TurboLinux, Bob’s Linux, etc. Testing our applications will be
a nightmare!
Yeah, so? How is this different from testing Windows applications
on the many flavors of the Win32 platform? Proper testing of Win32
applications today should include testing on the following distinct
platforms: “virgin” Windows 95, Windows 95 OSR2, Windows 95
with IE4, Windows 95 with IE5, Windows 95 with DCOM, Win-
dows 98, Windows 98 Second Edition, Windows 98 with IE5, Win-
iii THE DISH O
dows NT 4.0 SP3, Windows NT 4.0 with IE5, and Windows 2000.
Linux is no worse. Ultimately, it comes down to defining what plat-
forms you must support, and have the resources to test against. Any-
thing else is then technically not supported.

As for Borland’s testing of its Linux tools, Linux offers new
opportunities. Unlike the Windows realm, chances are good that
the many purveyors of Linux variants (er, distributions) will assist
us with testing our products on their platforms. If they don’t
understand the incentives to help developers support their Linux
flavors, they won’t last very long. Linux distributions are becom-
ing a commodity market, and commodities are distinguished
more by name, endorsements, and availability (placement) than
by actual feature differences.

Have you ever mused: “Wouldn’t it be cool if the VCL core pack-
ages were distributed with the OS? Then I really could distribute
full GUI applications in just 50K, and not have to worry about ship-
ping the VCL packages.” Realistically, the chances of getting Bor-
land run-time packages included in the Windows platform distribu-
tions are pretty slim (trust me, we’ve asked), or at least very expen-
sive. Linux, however, is not Windows ...

Who manages Linux? How are any major architectural changes
going to be implemented over the next five years? Who do I write to
ask for improvements?
Same response as before: How is this different from Windows? Who
do you write to for improvements to Windows? And how responsive
is Microsoft to your personal requests? Linux’s lack of central con-
trol poses different challenges, but it also eliminates some of the
steamroller effect that Microsoft is famous for.

The biggest risk for Linux is that true control of Linux features
and progress is in the hands of an elite few who manage the Linux
source-code archives. Personalities and egos can be as effective at
steamrolling personal agendas into Linux as Microsoft’s corporate
OS agenda is for Windows. The Linux community must be ever
vigilant of abuse of power.

Microsoft copies ideas from everybody. Linux is built on true innovation.
Baloney. Linux is a Unix clone. Call it what you want — derivative,
compatible, whatever — it’s still a clone of something that started
long ago in a galaxy far, far away. The leading graphical desktops
for Linux, KDE and Gnome, bear far greater resemblance to Win-
dows 95 than to their Unix kin, Motif and NextStep.

Granted, Windows 95’s look wasn’t all that new either. Apple
tried to sue Microsoft for copying the Macintosh UI/trashcan
icon, until Microsoft pointed out that Apple got many of its
Mac ideas — including the trashcan icon — from Xerox PARC.
Xerox is probably still wondering why people are interested in
their trashcans.

The greatest tragedy in the Linux community is that so many of
its most energetic and vocal advocates know so little about their
own technological heritage. Any new term or technology discov-
ered while surfing around in the Linux source code must certainly
be unique to Linux, or created in Linux and copied by Microsoft.
Right? And heaven help anyone who says anything critical (or
merely factual) about Linux, for flaming message threads shall rain
down upon the heads of the heretics. Yea, verily.
N KYLIX August 2000

THE DISH ON
With no knowledge of the past — or worse, revisionist history —
the Linux community is at risk of realizing its own form of “1984.”

Linux has done wonders for our community, but let us not run and
jump until Linux has actually proven itself.
Markets grow on an “S” curve: flat at the bottom, steep slope up,
and then flat at the top as the market reaches saturation. Opportunity
starts at the base of the growth curve. If we wait until the top of
the growth curve when Linux is established and there are a pleth-
ora of development tools available, then we’re stuck in “the flats”
— a plain-old 10 percent a year or less growth situation in a very
crowded market space. Sounds like Windows, doesn’t it?

It’s very difficult to make a runaway success story from a standing start
in the flats at either end of the growth curve. However, if you can hitch
your wagon to a market “big bang” — get into a market soon after it
starts its explosive growth — then your product can be swept up in the
market’s growth. That’s how you get a triple-digit return on investment
and market share. It’s a relativity thing; you can’t travel faster than the
speed of light through normal space, but what happens if your space is
expanding faster than the speed of light? When you take a step forward
on an aircraft in flight, are you walking at 500 miles per hour? Would
you rather have 10 percent of a large, stable market, or 10 percent of a
smaller market that’s doubling in size every year?

Remember that development tools have to venture ahead of applica-
tions by 18 months or more. You won’t have a lot of really good appli-
cations on a particular platform until you have several really good
sets of tools to choose from. Certainly, it’s a little early yet to commit
resources to developing end-user desktop applications for Linux. Linux
has yet to really crack into the end-user desktop OS space. Whether or
not Linux finds a foothold in the desktop space or remains a server OS,
the time is right for development tools to move in.

If we do it right, Kylix has the potential to open the floodgates for
Linux applications and Linux acceptance in the consumer markets.
As noble as that may sound, we intend to make a buck on it too.
These situations are very rare, but I firmly believe that Kylix is a
market-maker opportunity — for Borland and for Linux.

Borland is a Windows shop. How are you going to survive a platform
shift to Linux?
Excuse me, Borland hasn’t always been a Windows tools vendor. Bor-
land has produced development tools for CP/M, MSDOS, Macintosh,
OS/2, Windows 3.1, protected mode DOS, Windows 95, Windows
NT, and most recently, Java. (I don’t consider Windows 95/Windows
98 a complete Win32 implementation.) The senior staff of the Kylix
development team has first-hand experience developing native tools
for seven distinct platforms: real mode MSDOS, 16-bit Windows 3.1,
16-bit protected mode DOS, 32-bit protected mode DOS, Windows
95, Windows NT, and Java. And I don’t mean one staff member per
platform; I mean nearly all the senior staff has worked on products on
all these platforms.

Given this broad base of experience in the Kylix team, Linux is more
of another walk around the block than some radical departure never
before attempted. There are different faces to greet, different sights
to see, but the same streets to walk, and same shoes to walk them.

It’s amazing (and frustrating) how many of the “new” platform issues
we’re discovering in our Linux work bear haunting resemblance to plat-
iv THE DISH O
form challenges discovered and solved in past Borland products. For
example, Linux’s Position Independent Code (PIC) specification for
shared object libraries will require compiler code generation treatments
that are conceptually identical to the DS segment switching required in
exported functions in 16-bit Windows DLLs. Spooky, huh?

A lot of the Delphi team is off doing Linux stuff now. Has Borland
abandoned Delphi 6/C++Builder 6 development for Windows?
No. “Deep cycle” R&D for the Delphi 6/C++Builder 6 Windows
products is proceeding in parallel with the Kylix effort. Some Delphi
team members are dedicated to Delphi 6/C++Builder 6 work, some
are dedicated to Kylix work, and some (like me) work on technol-
ogy that applies to both platforms, and/or consult and advise for
both projects simultaneously.

We’ve hired a lot of new folks to fill new openings in the Kylix effort,
or backfill openings created on the Windows side by senior team
members shifting focus to Kylix. Shifting resources around isn’t the
end of the world: We do it all the time here at Borland. It’s called
resource management — putting the talent and manpower where it’s
needed to complete projects. As one release of Delphi ships, the team
shifts focus to the sister release of C++Builder. When that ships,
resources refocus on the next version of Delphi. Now we have a third
ball to juggle: Kylix in two flavors: Delphi and C++Builder.

Some folks have questioned the wisdom of having the majority of
the senior staff “distracted” by this so-called Kylix “side-project.”
I wouldn’t have it any other way. Who is best qualified to deliver a
new product in an alien environment on an insane schedule that will
still be recognizable as a child of Delphi? The Delphi team, that’s
who. We’ve built a few of these component architectures and IDE
things before, ya know.

Why?
As you might have guessed from these opinions, I’m not a rabid
Linux fan. Nor am I a rabid Windows fan (but don’t ask me on a bad
Linux day). Although I see the business opportunities opening up in
the Linux market, that’s not what keeps me going.

I volunteered to work on Kylix for a number of reasons:
1) I didn’t know a thing about Linux, and I felt I should. It’s a

personal growth opportunity. Lots of neat stuff to explore. To
better appreciate what you’re familiar with, get familiar with
something completely different.

2) To be a critical voice of reason in an otherwise enthusiastic
Linux fan club.

3) To ensure the end result is Delphi.

I’m working on Kylix, not because I believe in Linux, but because
I believe in Delphi.

This article originally appeared on the Borland Community Web
site. This article describes features of software products that are in
development and subject to change without notice. Description of
such features here is speculative and does not constitute a binding
contract or commitment of service.

Danny Thorpe is Staff Engineer for Delphi R&D at
Borland/Inprise Corp.
N KYLIX August 2000

THE DISH ON

CLX / Custom Controls / Cross-platform
Cross-platform Controls
From Windows to Linux, and Back
v

By Robert Kozak
T
hese are exciting times for Borland. Not since the first whisper of Delphi
has there been this much excitement about a Borland product. I’m talk-
ing, of course, about Kylix, the project to bring Delphi and C++Builder to
the Linux operating system. The Delphi version will be available first, so

for the rest of this article, Kylix refers to Delphi for Linux.
We’re developing a new VCL that will work with the Windows and Linux versions
of Delphi. This means you can write an application in Windows, then move the
source to a Linux box and recompile it — or vice versa. This new VCL is named
CLX, for Component Library Cross-Platform. CLX encompasses the entire cross-
platform library distributed with Kylix. There are a few sub-categories, which, as
of this writing, break down as follows:
• baseCLX is the RTL, up to, and including, Classes.pas.
• visualCLX includes the user interface classes, i.e. the usual controls.
• dbCLX comprises the cross-platform database components.
• interCLX includes the Internet stuff, e.g. Apache, etc.

At the time of this writing [early May 2000], the first Field Test for Kylix is just
beginning. By the time you read this, there will be a big difference between the
Kylix I’m using and working on, and the version you’ll see when it’s available.
This makes my job all that more difficult. It would be easy to talk in generalities,
waxing eloquent about the underlying architecture. I’d much rather discuss the
details, however, so you can get a head start producing CLX controls. Just keep
in mind that it’s likely some of the particulars discussed in this article will have
changed by the time you read it.

visualCLX
This article is a primer on writing custom visualCLX (vCLX) controls. Essen-
tially, the vCLX is what you know and love about the VCL. When you think
about it, Visual Component Library is a bit of a misnomer; there’s a lot more to
it than the visual components. In this article, however, I’m only going to write
about the visual controls. The Button, Edit, ListBox, PageControl, StatusBar,
ProgressBar, etc. controls, have all been re-implemented to be cross-platform.
How did we do this when the current VCL relies so much on Windows? In
brief, we ripped out all the Windows stuff, and replaced it with another toolkit.

In Linux, there are a number of toolkits that contain the standard windowing
controls, such as Buttons. They’re called widgets, and GTK and Qt (pro-
nounced “cute”) are two of the more popular. Qt is a Linux widget toolkit that
works on Windows and Linux. Because it aligned most closely with our goals,
Qt was chosen as the basis for CLX. In other words, Qt is to CLX what the
Windows API and common controls are to the VCL. Qt has some definite posi-
tives for the Delphi custom component developer on Linux:
• It’s a prevalent Linux widget, used by the popular KDE desktop.
• It’s similar to the Windows API style of development.
• Its graphics model is close to the VCL’s graphics model.
• It introduces many standard widgets, and handles the message loop.

This begs two questions: Does this mean that Kylix supports only KDE, and
no other desktops, such as Gnome? And how does using Qt as the basis of
CLX affect me? The answer to the first question is that Kylix applications will
run under any Linux desktop — particularly Gnome and KDE. The rest of this
article answers the second question.
THE DISH ON KYLIX August 2000

vi

THE DISH ON

Figure 1: Methods and proper-
ties missing from TWidgetControl
(formerly known as TWinControl).

Methods
CreateParams
CreateSubClass
CreateWindowHandle
CreateWnd
DestroyWindowHandle
DestroyWnd
DoAddDockClient
DockOver
DoDockOver
DoRemoveDockClient
DoUnDock
GetDeviceContext
MainWndProc
ResetIme
ResetImeComposition
SetIme
SetImeCompositionWindow
WndProc
Properties
Ctl3D
DefWndProc
DockManager
DockSite
ImeMode
ImeName
ParentCtl3D
UseDockManager
WheelAccumulator

Figure 2: The differences in the clas

TComponent TControl

TGraphicControl
Don’t Want You Back
The goal is to make it easy
for developers to port their
applications to Linux with
the least amount of trou-
ble. Most of the compo-
nent names are the same,
and most of the properties
are the same. Although
a few properties will be
missing from some com-
ponents, and a few new
ones will be added, for
the most part, it should be
fairly painless to port your
applications.

For component writers,
it’s a different story. For
starters, there is no
Windows.pas, nor Win-
dows API (see Figure
1). You can say goodbye
to the message directive,
and all of the CN and CM
notifications. These have
been changed to dynam-
ics. There is also no dock-
ing, bi-directional (BiDi)
methods/properties, input
method editor (IME), or
Asian support in the first
release. Of course, there’s
no ActiveX, COM, or
OLE support. Windows
3.1 components are also
out as I write this.
The project file, CalcTest.dpr, is shown in Figure
By now I bet you’re thinking, “That’s not so bad; porting my com-
ponents doesn’t sound too difficult.” But wait — there’s more. At
the time of this writing, the CLX unit names have all been changed
to include “Q” as a prefix. So StdCtrls is now QStdCtrls, some
classes have shuffled around a bit, and there are some subtle differ-
ences in the hierarchy (see Figure 2).

The CLX prefix of “Q” may or may not end up as the permanent
prefix in the final release. TWinControl is now a TWidgetControl, but
to ease the pain we added a TWinControl alias to TWidgetControl.
TWidgetControl and descendants all have a Handle property that is an
opaque reference to the Qt object; and a Hooks property, which is a
reference to the hook objects that handle the event mechanism. (Hooks
are part of a complex topic that is outside the scope of this article.)
THE DISH

s hierarchy are subtle.

TWidgetCo

TCustomControl
OwnerDraw will be replaced with a new idea called Styles.
Styles are basically a mechanism whereby a widget or applica-
tion can take on a whole new look, similar to skins in Windows.
This is something that’s still in development, so I’m not going to
discuss it further in this article. I will say this: It’s way cool.

Is anything the same? Sure. TCanvas is the same as you remem-
ber, with its collection of Pens and Brushes. As I mentioned,
the class hierarchy is basically the same, and events, such as
OnMouseDown, OnMouseMove, OnClick, etc., are still there.

What Does It All Mean?
Let’s move on to the meat of CLX, and see how it works. Qt is
a C++ toolkit, so all of its widgets are C++ objects. On the other
hand, CLX is written in Object Pascal, and Object Pascal can’t talk
directly to C++ objects. To make matters a little more difficult, Qt
uses multiple inheritance in a few places. So we created an interface
layer that takes all of the Qt classes and reduces them to a series of
straight C functions. These are then wrapped up in a DLL in Win-
dows and a shared object in Linux.

Every TWidgetControl has CreateWidget, InitWidget, and HookEvents
virtual methods that almost always have to be overridden.
CreateWidget creates the Qt widget, and assigns the Handle to
the FHandle private field variable. InitWidget gets called after
the widget is constructed, and the Handle is valid. Some of your
property assignments will move from the Create constructor to
InitWidget. This will allow delayed construction of the Qt object
until it’s really needed. For example, say you have a property
named Color. In SetColor, you can check with HandleAllocated
to see if you have a Qt handle. If the Handle is allocated, you can
make the proper call to Qt to set the color. If not, you can store
the value in a private field variable, and, in InitWidget, make the
call to the Qt function to set the color.

There are two types of events: Widget and System. HookEvents is
a virtual method that hooks the CLX controls event methods to a
special hook object that communicates with the Qt object. (At least
that’s how I like to look at it.) The hook object is really just a set
of method pointers. System events now go through EventHandler,
which is basically a replacement for WndProc.

Larger Than Life
All of this is just background information, because you really
don’t need to know it in order to write cross-platform custom
controls. It helps, but with CLX, writing cross-platform controls
is a snap. Just as you didn’t have to understand the complexities
of the Windows API to write a VCL control, the same goes
for CLX and Qt. Listing One (beginning on page viii) shows a
custom control written with CLX. [It’s available for download;
see end of article for details.]
ON KYLIX

ntrol

TFrameControl
3. It’s shown at design time in Figure 4. The
run-time result, a calculator control (shown in
Figure 5), looks much like the standard Micro-
soft Windows calculator.

As you can see, TCalculator is a descendant
of TFrameControl. TFrameControl is a new
control introduced to the hierarchy under
August 2000

THE DISH ON
TWidgetControl that provides a frame for your controls. The two
properties we’re most interested in are FrameBorderStyle and
ShadowStyle:

TFrameBorderStyle = (fbsNone, fbsBox, fbsPanel,
 fbsWinPanel, fbsHLine, fbsVLine, fbsStyledPanel,
 fbsPopupPanel);
TShadowStyle = (ssPlain, ssRaised, ssSunken);
vii THE DISH

program CalcTest;

uses
 SysUtils, Classes, QControls, QForms, QStdCtrls, Qt,
 QComCtrls, QCalc, Types;

type
 TTestForm = class(TForm)
 Calc: TCalculator;
 public
 constructor Create(AOwner: TComponent); override;
 end;

var
 TestForm: TTestForm;

{ TTestForm }
constructor TTestForm.Create(AOwner: TComponent);
begin
 inherited CreateNew(AOwner);
 SetBounds(10,100,640,480);

 Calc := TCalculator.Create(Self);
 // Don't forget: we have to set the parent.
 Calc.Parent := Self;
 Calc.Top := 100;
 Calc.Left := 200;
 // Uncomment these to try other Border effects:
 // Calc.FrameBorderStyle := fbsBox;
 // Calc.ShadowStyle := ssSunken;
end;

begin
 Application := TApplication.Create(nil);
 Application.CreateForm(TTestForm, TestForm);
 TestForm.Show;
 Application.Run;
end.

Figure 3: The project file for the CLX calculator control.

Figure 4: The calculator control at design time.
There are two important methods in this control. BuildCalc cre-
ates all of the buttons, and places them in their proper locations.
As you can see, I used an enumerator named TButtonType to hold
the “function” of the button, and this tidbit of information is stored
as an integer in the Tag property. I refer to this later in the Calc
method. All of the calculator buttons are stored in a protected array
of TButtonRecord records named Btns:

TButtonRecord = record
 Top: Integer;
 Left: Integer;
 Width: Integer;
 Height: Integer;
 Caption: string;
 Color: TColor;
end;

This makes it easy to set up all of the buttons in a loop, rather
than using an ugly bunch of TButton.Create calls. Notice that the
buttons’ OnClick handlers get assigned to the TCalculator’s Calc
method. It’s alright to do a direct assignment to what is typically
a user event, because all of these buttons are internal to the calcu-
lator, and these events won’t be published (see Figure 6).

I’m sure you’ve noticed a control I’ve created named TStatusLabel. I
made this for the TStatusBar. It’s basically a TLabel that publishes the
properties from TFrameControl. I wanted it in the calculator, so I could
get the “sunken box” look for the memory display like the Windows
calculator. The Qt label widget is really a lot like the VCL TPanel com-
ponent. For the TLabel in CLX, we don’t publish the frame properties,
but that doesn’t stop you from using them in your descendants.

The last thing I do in BuildCalc is to create the edit control to
display the results of the calculation. As you can see, the Text
property of the calculator hooks directly to the Text property of
the Edit control.

The other main method is Calc, which is essentially a huge case
statement that evaluates which button was pushed, and decides
what to do about it. I use the private field variables FCurrentValue,
FLastValue, and FRepeatValue to handle the value of the calculations,
so I don’t have to implement a stack. The idea was to show how to
create a cross-platform control, not how to write a calculator.
ON KYLIX August 2000

Figure 5: The control at run time, as it appears on Red
Hat Linux.

THE DISH ON

for i := Low(TButtonType) to High(TButtonType) do
 with TButton.Create(Self) do begin
 Parent := Self;
 SetBounds(Btns[i].Left, Btns[i].Top, Btns[i].Width,
 Btns[i].Height);
 Caption := Btns[i].Caption;
 Color := Btns[i].Color;
 OnClick := Calc;
 Tag := Ord(i);
 end;

Figure 6: A direct assignment to a user event is okay in
this case.
Oh yeah! Remember that I used the Tag property in BuildCalc to
hold its function? That’s retrieved in this method by casting the
Sender to a TButton, and casting the Tag back to a TButtonType.
ButtonType is the selector expression of the case statement:

ButtonType := TButtonType(TButton(Sender).Tag);

Are you wondering how we convert this to a cross-platform control?
No? Good! That means you’ve been paying attention. This code
will compile in Windows and Linux with absolutely no changes.
There are no extra steps involved. Just by the virtue of using CLX,
this control is ready to go.

Conclusion
As you can see, writing a cross-platform control isn’t all that different
from writing a VCL component. If you’re a new component developer,
it won’t be difficult to learn. If you’re an experienced VCL component
builder, most of your knowledge will transfer to Kylix nicely.

As I said earlier, there are a lot of differences, but that should only affect
developers who have components that rely on the Windows API. If you
wrote a control that was a descendant of a VCL control, an aggregate of
a few controls (as I did here with TCalculator), a non-visual component
that doesn’t rely on the Windows API, or was a TGraphic control, then
you shouldn’t have much trouble porting it to Linux.

This article describes features of software products that are in devel-
opment and are subject to change without notice. Description of
such features here is speculative and does not constitute a binding
contract or commitment of service.

The files referenced in this article are available on the Delphi Infor-
mant Magazine Complete Works CD located in INFORM\00\AUG\
DI200008RK.

Involved as a user of Delphi since the initial beta,
Robert Kozak is a member of the Kylix R&D team
and has been with Borland since the later half of
1999. Since he joined Borland, he has been involved
in the development of C++Builder 5 and Kylix. Robert
was involved with the start of TaDDA! (Toronto Area
Delphi Developers Association), which later merged
with TDUG (Toronto Delphi Users Group). Robert con-
tinues to stay active in the user community, and is
active on the Borland newsgroups.
viii THE DISH O
Begin Listing One — QCalc.pas
{ *** }
{ }
{ Borland Delphi Visual Component Library }
{ Borland Delphi Component Library (X)Crossplatform }
{ }
{ Copyright (c) 2000 Borland International }
{ }
{ *** }
unit QCalc;

// This is the very f irst Custom control written for CLX.
interface

uses
 Sysutils, Classes, QT, QControls, QStdCtrls, QComCtrls,
 QGraphics;

type
 TButtonType = (bt0, bt1, bt2, bt3, bt4, bt5, bt6, bt7,
 bt8, bt9, btDecimal, btPlusMinus, btMultiply, btDivide,
 btAdd, btSubtract, btSqrt, btPercent, btInverse,
 btEquals, btBackspace, btClear, btClearAll,
 btMemoryRecall, btMemoryStore, btMemoryClear,
 btMemoryAdd);

 TCalcState = (csNone, csAdd, csSubtract, csMultiply,
 csDivide);

 TButtonRecord = record
 Top: Integer;
 Left: Integer;
 Width: Integer;
 Height: Integer;
 Caption: string;
 Color: TColor;
 end;

 TCalculator = class(TFrameControl)
 private
 FResultEdit: TEdit;
 FStatus: TStatusLabel;
 FMemoryValue: Single;
 FCurrentValue: Single;
 FLastValue: Single;
 FRepeatValue: Single;
 FState: TCalcState;
 FBackSpaceValid: Boolean;
 protected
 Btns: array [TButtonType] of TButtonRecord;
 procedure BuildCalc;
 procedure Calc(Sender: TObject);
 function GetText : string; override;
 procedure SetText(const Value : string); override;
 public
 constructor Create(AOwner: TComponent); override;
 property Value : Single read FCurrentValue;
 published
 property Text : string read GetText write SetText;
 property FrameBorderStyle;
 property ShadowStyle;
 property LineWidth;
 property Margin;
 property MidLineWidth;
 property FrameRect;
 end;

implementation

function ButtonRecord(aTop, aLeft, aWidth,
 aHeight: Integer; aCaption: string;
 aColor: TColor = clBlack): TButtonRecord;
N KYLIX August 2000

THE DISH ON
begin
 Result.Top := aTop;
 Result.Left := aLeft;
 Result.Width := aWidth;
 Result.Height := aHeight;
 Result.Caption := aCaption;
 Result.Color := aColor;
end;

{ TCalculator }
constructor TCalculator.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 SetBounds(0,0,250,200);
 FMemoryValue := 0;
 FCurrentValue := 0;
 FLastValue := 0;
 FRepeatValue := 0;
 ShadowStyle := ssRaised;
 FrameBorderStyle := fbsStyledPanel;
 BuildCalc;
end;

procedure TCalculator.BuildCalc;
var
 i: TButtonType;
begin
 Btns[bt7] := ButtonRecord(70, 48, 36, 29, '7');
 Btns[bt4] := ButtonRecord(102, 48, 36, 29, '4');
 Btns[bt1] := ButtonRecord(134, 48, 36, 29, '1');
 Btns[bt0] := ButtonRecord(166, 48, 36, 29, '0');
 Btns[bt8] := ButtonRecord(70, 88, 36, 29, '8');
 Btns[bt5] := ButtonRecord(102, 88, 36, 29, '5');
 Btns[bt2] := ButtonRecord(134, 88, 36, 29, '2');
 Btns[btPlusMinus] :=
 ButtonRecord(166, 88, 36, 29, '+/-');
 Btns[bt9] := ButtonRecord(70, 128, 36, 29, '9');
 Btns[bt6] := ButtonRecord(102, 128, 36, 29, '6');
 Btns[bt3] := ButtonRecord(134, 128, 36, 29, '3');
 Btns[btDecimal] := ButtonRecord(166, 128, 36, 29, '.');
 Btns[btDivide] := ButtonRecord(70, 168, 36, 29, '/');
 Btns[btMultiply] := ButtonRecord(102, 168, 36, 29, '*');
 Btns[btSubtract] := ButtonRecord(134, 168, 36, 29, '-');
 Btns[btAdd] := ButtonRecord(166, 168, 36, 29, '+');
 Btns[btBackspace] :=
 ButtonRecord(37, 49, 63, 25, 'Backspace');
 Btns[btClear] := ButtonRecord(37, 115, 63, 25, 'CE');
 Btns[btClearAll] := ButtonRecord(37, 181, 63, 25, 'C');
 Btns[btsqrt] := ButtonRecord(70, 208, 36, 29, 'sqrt');
 Btns[btPercent] := ButtonRecord(102, 208, 36, 29, '%');
 Btns[btInverse] := ButtonRecord(134, 208, 36, 29, '1/x');
 Btns[btEquals] := ButtonRecord(166, 208, 36, 29, '=');
 Btns[btMemoryAdd] := ButtonRecord(166, 5, 36, 29, 'M+');
 Btns[btMemoryStore] :=
 ButtonRecord(134, 5, 36, 29, 'MS');
 Btns[btMemoryRecall] :=
 ButtonRecord(102, 5, 36, 29, 'MR');
 Btns[btMemoryClear] := ButtonRecord(70, 5, 36, 29, 'MC');

 for i := Low(TButtonType) to High(TButtonType) do
 with TButton.Create(Self) do begin
 Parent := Self;
 SetBounds(Btns[i].Left, Btns[i].Top, Btns[i].Width,
 Btns[i].Height);
 Caption := Btns[i].Caption;
 Color := Btns[i].Color;
 OnClick := Calc;
 Tag := Ord(i);
 end;

 FStatus := TStatusLabel.Create(Self);
 with FStatus do begin
 Parent := Self;
ix THE DISH ON
 SetBounds(10, 38, 25, 25);
 FrameBorderStyle := fbsStyledPanel;
 ShadowStyle := ssSunken;
 end;

 FResultEdit := TEdit.Create(Self);
 FResultEdit.Parent := Self;
 FResultEdit.SetBounds(5, 5, 240, 25);
 FResultEdit.Alignment := taRightJustify;
 FResultEdit.Font.Height := -13;
 FResultEdit.Font.Name := 'Arial';
 FResultEdit.Text := '0';
end;

procedure TCalculator.Calc(Sender: TObject);
const
 MemoryStoreMap: array [Boolean] of string = (' M','');
var
 ButtonType: TButtonType;
 Temp: string;
 TempValue: Single;
begin
 ButtonType := TButtonType(TButton(Sender).Tag);

 try
 case ButtonType of
 bt0..bt9:
 begin
 FBackSpaceValid := True;
 if (FResultEdit.Text = '0') or
 (FCurrentValue = 0) then
 FResultEdit.Text := '';
 FResultEdit.Text :=
 FResultEdit.Text + Btns[ButtonType].Caption;
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FRepeatValue := 0;
 end;

 btDecimal:
 if Pos('.', FResultEdit.Text) < 1 then begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FLastValue := 0;
 FResultEdit.Text :=
 FResultEdit.Text + Btns[ButtonType].Caption;
 end;

 btPlusMinus:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FCurrentValue := FCurrentValue * -1;
 FResultEdit.Text := FloatToStr(FCurrentValue);
 end;

 btClearAll:
 begin
 FCurrentValue := 0;
 FLastValue := 0;
 FResultEdit.Text := '0';
 FState := csNone;
 end;

 btClear:
 begin
 FCurrentValue := 0;
 FResultEdit.Text := '0';
 end;

 btAdd:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FState := csAdd;
 FLastValue := FCurrentValue;
 FCurrentValue := 0;
 KYLIX August 2000

THE DISH ON
 end;

 btSubtract:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FState := csSubtract;
 FLastValue := FCurrentValue;
 FCurrentValue := 0;
 end;

 btDivide:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FState := csDivide;
 FLastValue := FCurrentValue;
 FCurrentValue := 0;
 end;

 btMultiply:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FState := csMultiply;
 FLastValue := FCurrentValue;
 FCurrentValue := 0;
 end;

 btBackSpace:
 if FBackSpaceValid then begin
 Temp := FResultEdit.Text;
 Delete(Temp, Length(Temp),1);
 if Temp = '' then
 Temp := '0';
 FCurrentValue := StrToFloat(Temp);
 FResultEdit.Text := FloatToStr(FCurrentValue);
 end;

 btInverse:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FCurrentValue := 1 / FCurrentValue;
 FResultEdit.Text := FloatToStr(FCurrentValue);
 end;

 btPercent:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FCurrentValue := FCurrentValue / 100;
 FResultEdit.Text := FloatToStr(FCurrentValue);
 end;

 btSqrt:
 begin
 FCurrentValue := StrToFloat(FResultEdit.Text);
 FCurrentValue := Sqrt(FCurrentValue);
 FResultEdit.Text := FloatToStr(FCurrentValue);
 end;

 btMemoryStore:
 begin
 FMemoryValue := StrToFloat(FResultEdit.Text);
 FMemoryValue := FMemoryValue * 1;
 FCurrentValue := 0;
 end;

 btMemoryAdd:
 begin
 TempValue := FMemoryValue;
 FMemoryValue := StrToFloat(FResultEdit.Text);
 FMemoryValue := (FMemoryValue * 1) + TempValue;
 end;

 btMemoryRecall:
 begin
x THE DISH O
 FResultEdit.Text := FloatToStr(FMemoryValue);
 FCurrentValue := 0;
 end;

 btMemoryClear:
 begin
 FMemoryValue := 0;
 end;

 btEquals:
 if FState <> csNone then begin
 FBackSpaceValid := False;
 FCurrentValue := StrToFloat(FResultEdit.Text);
 if FRepeatValue = 0 then begin
 FRepeatValue := FCurrentValue;
 FCurrentValue := FLastValue;
 end;
 FLastValue := FRepeatValue;
 case FState of
 csAdd:
 FCurrentValue := FCurrentValue + FLastValue;
 csMultiply:
 FCurrentValue := FCurrentValue * FLastValue;
 csSubtract:
 FCurrentValue := FCurrentValue - FLastValue;
 csDivide:
 FCurrentValue := FCurrentValue / FLastValue;
 end;
 FLastValue := FCurrentValue;
 FResultEdit.Text := FloatToStr(FCurrentValue);
 FCurrentValue := 0;
 end;
 end; // case ButtonType of...

 except
 on E: Exception do begin
 FResultEdit.Text := E.Message;
 FLastValue := 0;
 FCurrentValue := 0;
 FRepeatValue := 0;
 FState := csNone;
 end;
 end;
 FStatus.Caption := MemoryStoreMap[FMemoryValue = 0];
end;

function TCalculator.GetText: string;
begin
 Result := FResultEdit.Text;
end;

procedure TCalculator.SetText(const Value: string);
begin
 FResultEdit.Text := Value;
end;

end.

End Listing One
N KYLIX August 2000

THE DISH ON

R&D Interview
Some Q&A with R&D
An Interview with Borland’s Michael Swindell and Chuck Jazdzewski
xi
D
elphi Informant Magazine recently had the good fortune of being
able to interview two senior members of the Borland research and
development team working on the Kylix Project. Michael Swindell is
a Director of Product Management, and director of the Kylix Project.

Chuck Jazdzewski was one of the two original developers of Delphi, and is
Chief Architect of Delphi and Kylix.
What will Kylix be named when it’s released? “Delphi for Linux” seems the obvi-
ous choice.
Michael: We haven’t announced the official name yet. It’ll have to remain a secret
for a little while longer. At this time, Kylix is a code name, but what we are build-
ing is definitely Delphi.

Will there be separate editions of Kylix, e.g. Standard, Enterprise, etc.?
Michael: Yes, there will be different editions for different levels of developer and
target development types, just as we now offer with the Windows editions. However,
we do have some fairly substantial changes in the works in the area of editions.

How will Kylix be priced? Will Kylix be open source?
Michael: Pricing has not yet been announced, but there will be pricing. <smile>
There are no plans to open source the Kylix IDE and compiler. Our business
model still includes selling our products. However, we do understand and appre-
ciate free and open source software development. I’m confident that Linux —
not to mention Kylix — would not exist today without the GPL (GNU General
Public License), so we’re working on a solution that will give us the freedom to
support our business model, and arm developers with tools to build proprietary
applications or open-source applications. It’s going to be up to the developer to
decide. A major piece of what we are working on is what and how in Kylix to
open source, and what to make freely available for download.

Delphi is famous for being developed in Delphi. Will this still be the case for Kylix?
Chuck: Delphi for Linux is being developed in Delphi for Linux. We are
using the same compiler and the same fundamental CLX run-time library
to build Kylix that application users will be using. However, the initial ver-
sion of the Linux IDE won’t be using CLX itself for its user interface. This
is due mainly to the parallel IDE/CLX development model we are taking
with the first version of Kylix in order to ship in 2000. We plan to move the
IDE’s UI to CLX in a future release.

What has been the biggest challenge in developing Kylix? What, if anything, turned
out to be unexpectedly easy?
Chuck: Our biggest challenge so far has been modifying the compiler to emit
ELF-format, instead of PE-format, executables and dealing with the differences
between Linux source object files (.so files) and Windows DLLs. We’ve also
encountered incompatibilities between various desktops, although we’re working
with various standards groups in the Linux community to help standardize the
application interface to the desktop.
THE DISH ON KYLIX August 2000

THE DISH ON
What’s been a pleasant surprise so far is how portable code written
with the VCL has been. We’ve found that if the code is written in
straight Delphi, with no implicit Windows assumptions, the code
moves very well into CLX. A substantial number of components
that we coded ourselves have moved over with little or no changes.

Michael: We were also surprised when a few third-party compo-
nent developers in the beta program had rebuilt their custom com-
ponents natively for Linux, after having the first Kylix beta installed
for just a few hours. That was very validating for us.

Users
You’ve been surveying the Delphi community, which is ostensibly a
Windows community. How many of them have Unix/Linux experience?
Michael: It’s definitely a mix. There are Windows developers who
cut their teeth on Unix in the 70s and 80s, and there are Windows
developers who have never needed to edit a config.sys. We haven’t
done any specific studies on this, but anecdotally it looks like about
a quarter of our Windows developers have Unix/Linux experience.
However, about three-quarters plan to start developing on Linux
with Kylix — which has us very excited.

Do you anticipate attracting new customers to Kylix, or do you expect
most to come from your Delphi/C++Builder base?
Michael: Absolutely yes! About five years ago developers flocked
to Delphi from Visual Basic, simply because it did RAD better. It
was a native code compiler, it was blazingly fast, it included a vast
component library, and it allowed developers to derive from our
library and build their own custom components. Five years later,
we’re seeing a whole new rush of Visual Basic developers coming
over to Delphi in order to get to Linux. It’s unlikely that Microsoft
will take VB and VC++ to Linux anytime soon, so if you’re a VB
or VC++ developer, and you want platform flexibility, suddenly
Delphi and C++Builder look mighty attractive.

Is Kylix particularly well-suited for corporate developers, indepen-
dent developers, or third-party developers?
Michael: I wouldn’t say more for one type or the other. Kylix is well
suited for “application” developers. Kylix is all about applications —
whether you’re a fortune-50 bank, or one guy in a garage. If you’re
re-building the kernel, or a device driver for the latest 3D accelerator,
then the GCC (GNU C compiler), Emacs, Cygnus, or CodeWarrior is
probably your best bet. The tools we’re used to seeing on Linux have
been well-suited for building the Linux infrastructure, but haven’t
done much to help solve the application problems. The complicated
technologies that no one likes to deal with are exactly what Kylix
does so well — making the hard stuff easy. So if you want to build
anything with a GUI, or an Apache Web application, or anything that
remotely has to do with a database, then Kylix is the tool you need.

Kylix is also a tool that’s tailor made for third-party developers.
Delphi is a testament to this, with tens of thousands of third-party
tools and components, commercially and freely available online and
in catalogs. Kylix will deliver a lot out of the box, but will also make
it easy to encapsulate more vertical solutions, and present them to a
developer in a way that’s both easy to use and understand. I’m not
a telephony expert for example, but I can throw a set of third-party
Delphi telephony components down on a form and have a working
application that integrates with our PBX in minutes. Kylix makes it
easy for the third-party, and easy for the application developer, to
leverage those vertical solutions.
xii THE DISH O
Are there particular types of applications for which Kylix will be
especially well-suited?
Michael: Delphi targets a wide range of application development and
Kylix will be no exception. The first and most obvious that Kylix will
target will be visual applications, applications with graphical user inter-
faces. From a desktop application perspective, Linux is in a similar situ-
ation as Windows was in the early 90s. Until, of course, when Visual
Basic and Delphi changed everything. Beyond that, Kylix specifically
targets database and Internet applications, making both far faster and
easier to develop on Linux than with any other tool. Then there’s the
added benefit of cross-platform compatibility with Windows.

Chuck: Keeping in mind that Kylix is Delphi and C++Builder
for Linux, Kylix is well-suited for any application you would use
Delphi or C++Builder for, including utilities, client/server appli-
cations, multi-tier applications, Web servers, etc. The only differ-
ence is that Kylix applications are now native Linux applications.

Database
Which databases do you plan to support with version 1? Do you plan
to ship a database with it?
Michael: We’re working with all the major database vendors on Kylix
support. We hope to support MySQL, InterBase, Oracle, DB2, and
perhaps a few more. At this time we have MySQL and InterBase in
beta, and are getting ready to go into beta with the next driver. If all
continues as planned, Kylix will have the fastest, most flexible, and
most diverse DB support of any development tool on Linux and Win-
dows. We plan to ship the Open Source InterBase 6.0 with Kylix.

How will the connectivity to different databases be handled? Will
there be a middleware layer that fulfills the same function as the BDE
or ADO in the Windows world?
Michael: There is a new data-access layer named dbDirect that is
both blazingly fast and fully cross platform. The BDE is a heavy-
weight because it’s a desktop RDBMS in itself, with a lot of over-
head and configuration issues that are really unnecessary if you’re
using anything other than Paradox or dBASE tables. In Kylix the
access layer is just that, an optimized data-access layer. We’ll be
supplying native drivers for the popular databases we mentioned a
minute ago, that will plug into dbDirect. We also plan to open up the
specification for dbDirect, so others can easily build native drivers
for other data sources, and so it can be used in non-Kylix solutions.

Will the database component architecture resemble the TTable,
TQuery, TStoredProc architecture? Or will it be more MIDAS-like, i.e.
some type of provider/consumer architecture such as JBuilder’s?
Chuck: The architecture for database access in Kylix will be more
like MIDAS than the BDE. If you’re already using cached-updates,
TStoredProc, TQuery, and/or MIDAS, your application will port
very quickly to the new components. If you rely on BDE-specific
features of TTable, you’ll have to rewrite portions of your applica-
tion. We’re making the Kylix database-access components cross-
platform, and will make them available in the next release of our
Windows version of Delphi as well. This will allow you to make
the change once to the new architecture, and then keep the Win-
dows and Linux code substantially the same.

Interface
Does Kylix use an existing Linux GUI, such as the KDE Desktop
Environment (KDE), or GNU Network Object Model Environment
(GNOME), or are you rolling your own?
N KYLIX August 2000

THE DISH ON
Chuck: We certainly won’t be doing our own desktop or window
manager; we’ll be relying on the existing desktops such as KDE
and GNOME.

Michael: Or no desktop at all for that matter. If a user just wants
to run their favorite window manager without GNOME or KDE,
that will be fine. As for the GUI widgets themselves, CLX will be
using the native Linux Qt widgets. We don’t roll our own in Win-
dows either, thank goodness. In Windows the VCL uses the Win-
dows common controls and GDI for drawing functions and widgets.
On Linux, CLX will be using Qt’s widgets and drawing functions
in place of the Windows API.

Which Linux interfaces (e.g. GNOME, KDE, etc.) will Kylix support?
Chuck: We’d like to support all desktops, but we’ll probably only
certify against GNOME and KDE. The applications you write, how-
ever, will work on any desktop.

Is Kylix going to support Linux themes? For example, if I develop
under GNOME and ship my application to someone running KDE, is
it going to look like a GNOME application, or a KDE application?
Chuck: We’ll try to make your application feel as natural as pos-
sible. We plan to support both KDE and GNOME themes even-
tually, but will probably only ship with KDE theme support in
the first version. We don’t like having to make a choice between
KDE and GNOME support, and are working with the GNOME
and KDE teams to make theme support more transparent. Unfor-
tunately, I don’t expect to see fruit from our effort in the first
version of Kylix.

Michael: Philosophically we don’t believe it’s the place of a tools
vendor to dictate which desktop environment the end user of an appli-
cation should be using. It should be up to the Linux user to decide
which desktop he or she prefers. We don’t want to get in the way of
that decision. At the same time, both KDE and GNOME are exposing
some very cool APIs, and we intend to support them when possible
— either automatically or at the discretion of the developer.

Windows-Linux Compatibility
Will I be able to move my projects back and forth between Delphi
and Kylix?
Chuck: There are two ways we plan to support this. First, if
you need a high degree of source compatibility, you can use
CLX components under Windows. Second, we will also make
the form designer capable of parsing IFDEF statements in the
source, so you can design two form images, one for CLX and
one for VCL, in the same file. This will allow you to have a fair
degree of source compatibility without sacrificing Windows fea-
tures or the Windows look and feel.

Will the Delphi and Kylix IDEs be the same?
Chuck: The Kylix IDE is based on the Delphi 5 IDE, so it will look
and feel substantially the same. There will probably be a few Delphi
6 features that make their way into the Kylix release, but we’ll try
not to steal too much thunder from Delphi 6.

Michael: We plan to develop both IDEs simultaneously, so a new
feature in one will be a new feature in the other.

What level of interoperability is planned between the Windows
and Linux versions? For example, are the DFMs compatible at the
xiii THE DISH O
binary (or even text) level?
Chuck: The format of the DFM files will be exactly the same,
but that really doesn’t answer the question. The biggest problem
users will face moving from Windows to Linux is finding the
equivalent components. We’ll provide the standard components
Button, Label, etc., but if you’re using a third-party component,
or a component you wrote yourself, you’ll need to find or create
a Linux equivalent. We’re working with our third-party vendors
now to help them get a leg up on the process of moving their
components to Linux. Since we feel this is one of the biggest
issues users will face, we’re spending a lot of time on it.

Michael: We’re focusing on providing a high degree of com-
patibility between Kylix and Delphi from the application devel-
oper’s perspective, but things are different for the third-party
component developers who often stray outside the VCL today.
There are basically two levels of compatibility for the applica-
tion developer: VCL-to-CLX compatibility, and CLX-to-CLX
compatibility. Yes, I said CLX to CLX. CLX will be coming to
a Windows version of Delphi in the near future. Moving from
VCL to CLX should be straightforward for a Delphi developer;
the basics should just “move over” so to speak. There will be
minor differences here and there, but the classes, properties, and
methods should be the same for the most part. Of course, it’s
always the minor differences that have the biggest impact. Once
a developer is using CLX, then it really becomes possible to
single-source an application between the platforms — provided
the developer keeps some basic rules in mind.

Will current Delphi applications have to be substantially rewritten to
compile and run on Linux via Kylix?
Chuck: I would like to say “Absolutely not,” but it really
depends. If your application is a traditional client/server applica-
tion, WebBroker application, etc., then you won’t have to change
much, if anything. You just need to find the equivalent compo-
nents, many of which will be named the same, and recompile the
application. If you’re using MAPI, ActiveX, or have written a
desktop extension, however, you have your work cut out for you.
The more Windows-specific features you use, the more trouble
you’ll have porting to Linux.

Will the CLX have the same class structure as the VCL?
Chuck: The CLX hierarchy and the VCL hierarchy are very
similar. Anyone familiar with VCL will feel right at home with
CLX. Some of the names have changed, but not drastically.

The plan was to create a version of Delphi for Linux that was com-
patible at the VCL level, with some components available for Linux
only, some for Windows only, and some for both. How does it look like
those percentages will shake out?
Chuck: Our original goal was to create a native class library for
Linux. We did not set out, initially, to create a cross-platform
library at all. We wanted to make sure that the application you
wrote using Kylix looked and felt like a Linux application —
even to a die-hard Linux user. As it turns out, since we based CLX
on top of an existing cross-platform widget set, Qt, we found
we could also easily produce a Windows version of CLX, thus
making it cross-platform. Also, since most of the abstraction pro-
vided by the VCL was already independent of Windows, a lot of
that abstraction is common between Linux and Windows. We are
quite pleased, so far, with the degree of compatibility between
N KYLIX August 2000

THE DISH ON
VCL and CLX, but we won’t know exact percentages until we
are closer to shipping. Even then, the percentages will not be
very meaningful, since compatibility really depends so much on
how much your individual applications depend on Windows and
Windows-specific things.

Aside from using the Windows API and Windows-specific calls (e.g.
DirectX), is there going to be any cross-platform programming dif-
ferences? For example, if I use OpenGL and standard Delphi com-
mands, will I be able to just make a change such as the OpenGL.pas
unit, and then recompile in Kylix?
Chuck: This is really hard to say. Obviously things like DirectX,
MAPI, etc. will not exist on Linux. OpenGL and the socket API,
will. The general rule of thumb is if the API originally came from
Unix, you should be fine. If it was originated by Microsoft, then
you’ll need to find a Linux equivalent.

The biggest single non-API issue we have found is differences
between file names in Linux and file names in Windows. Linux
is case-sensitive, Windows is not. Linux uses a forward slash
to delimit directories, where Windows uses a backslash. Linux
doesn’t have a device prefix, while Windows does. We’re modify-
ing our RTL to allow you to code independent of these issues, so
you’ll need to examine your code carefully for subtle assumptions
regarding the format of file names, and possibly make changes
with regard to the new API.

How about kernel and library compatibility? If I create my appli-
cation on a 2.2.10 kernel, supplied by Red Hat, will it run on
a 2.2.12 kernel I download from Slackware? Do I need to ship
libraries, depend on standard glibc, or are the Kylix executables
stand-alone, as Delphi executables are?
Chuck: We expect a high degree of compatibility between the var-
ious distributions, once you get your application installed. Unfor-
tunately, installing the application on the various distributions
remains one of Linux’s biggest problems. It’s a problem that Red
Hat, Debian, and others have made great strides in, but the installa-
tion process is still not standardized across all Linux distributions.
We will be working with various companies to deal with this prob-
lem for our own installation, and we hope to make those solutions
available to our customers as well.

The operating system changes, but the chip remains the same. Does
this mean that the assembler code in Delphi — and in Delphi applica-
tions — can be ported unscathed?
Chuck: My advice is to stay away from assembler if you want
to have your code portable. Recode it in Pascal if you can. We
are doing just that for substantial portions of the RTL. The main
reason is that, as opposed to Windows, the assembler used in
a Linux .so file is different from that in an executable. Shared
objects require the code to be position independent without fix-
ups. This means that all code referring to a global variable needs
to be through an indirection relative to what is referred to as the
global offset table. This is too complicated a topic to describe
here, but we’ll describe this in our documentation. Linux is a
different world. The chip is the same, but the assumptions made
by the OS are different.

Linux
Which flavors of Linux will Kylix support in version 1. Which one
do you use?
xiv THE DISH O
Michael: We haven’t yet announced which distributions will be
recommended “on the box” so to speak, but we’re testing on a
handful of different popular distributions, and our beta testers
are also using different distributions. We also have representa-
tives from all the major distributions participating in the beta
program, and interacting with the beta testers. In house it’s a
fairly mixed bag; we use Red Hat, Mandrake, Debian, SuSE,
Caldera, TurboLinux, and Corel.

Once Linux is supported, it doesn’t seem a long step to Unix. If Kylix
takes off, will we see a Delphi for Unix?
Michael: If we see a market demand, we’ll certainly explore it.
Kylix came about primarily because our customers spoke up, and
we were able to verify the validity of the demand. Technically, the
work we are doing in Kylix, removing the Windows-specific depen-
dencies, will enable us to take Kylix to just about anywhere we’d
like. Where we’d like to go and what would make good business
sense are sometimes two different things. <laugh>

Many Linux developers are accustomed to getting their software for
free. Are there plans to make a free version of Kylix available? Does
Inprise anticipate having problems actually selling Kylix?
Michael: We haven’t seen this kind of demand for a product in
development since Delphi 1 five years ago. The demand is coming
from both the Windows and Linux communities, so we don’t see
any obstacles in selling Kylix.

I can say without blinking that, next to Apache, I believe Kylix
will be the most important application for the Linux platform to
date, and probably for the next three to five years. That said, will
Linux developers pay for Kylix? We believe so. Linux develop-
ers have told us that they aren’t looking for any handouts; they’re
looking for a killer application-development tool. That doesn’t
mean we won’t support open-source development, or that we
won’t be offering a form of freely available tools. These are things
we’re definitely working on.

Are there particular features of Linux that are proving to be espe-
cially helpful in the development of Kylix? For example, is there some
feature of the Linux OS that has helped the team overcome an obsta-
cle found in Windows?
Chuck: Stability is the biggest feature of Linux that has helped
us. The only time I reboot my Linux machine is to upgrade the
kernel. People ask me what the “blue screen” equivalent is under
Linux. I smile and respond, “I don’t know; I haven’t seen it yet.”
Although Windows has made great strides in stability, especially
with Windows 2000, I feel that Linux sets the standard for work-
station stability.

Miscellaneous
How do the size of the executables compare to ones written with
standard Linux compilers, e.g. the GCC?
Michael: It’s definitely too early to say for sure, but it’s our
intention that executables be on par with the size of Delphi’s
Windows executables.

How do size and performance measure up to a Delphi application on
a similarly equipped Windows box?
Michael: Again, it’s still too early to tell, but we expect the system
requirements to be similar to Delphi/Windows to achieve the same
level of performance.
N KYLIX August 2000

THE DISH ON

Is the CLX thread-safe?
Chuck: No, but it will be thread-aware. We will provide a standard
mechanism that will allow multiple threads to operate in the same
application and use CLX.

How’s access to other libraries? Can I use third-party libraries, for
example, to make enhancements to or take advantage of existing
software like the GNOME/KDE configuration software, or StarOffice?
Chuck: We don’t have any built-in limitation to what you can use
or link to, but you will need to have the API translated into Pascal,
just as we did for Windows, and now have done with Qt, and many
of the Linux APIs such as libc.

Michael: Libraries built with the GCC should be fine, but — as
Chuck said — the headers will need to be translated into Pascal. In
the near future, however, C++Builder will be a different story, and
should be able to use GCC libraries directly.

Are OpenGL wrappers included out-of-the-box?
Chuck: We will probably not have OpenGL support available out-
of-the-box. We do expect organizations, such as Project JEDI (http://
www.delphi-jedi.org), to contribute these types of translations.

What support is included for using multiple X terminals in the same
program? How easy will it be to use?
Chuck: CLX will not have any built-in support for multiple
X-terminal connections, but that doesn’t limit a single X server
from rendering to multiple monitors, which we will support.
Your application could also start multiple X connections as well,
but they would have to be handled separately and independently
from CLX. We’ve found that multiple X-terminal connections
aren’t supported very often among applications, nor is it typi-
cally required.

Is there going to be a set of components comparable to the Internet
and FastNet components in Delphi 5?
Michael: Yes, there will be client and server Internet protocol
components. There has been a lot of progress in the area of
Delphi third-party Internet protocol components lately, and we
expect to see several available very soon, in addition to what we
include with Kylix.

Have you considered adding limited JavaBean support, say, the abil-
ity to import them?
Chuck: We haven’t specifically looked into supporting JavaBeans,
but we have looked into coming up with an independent compo-
nent specification for Linux that would be similar to ActiveX under
Windows. We’re working on this specification with Troll Tech,
the makers of Qt, who employ some of the maintainers of KDE;
and Red Hat, the primary maintainers of GTK+ and GNOME.
Trolltech and Red Hat have taken the lead on this specification,
and we’ve made some contributions as well. We plan to imple-
ment the specification when it’s finalized. It should then be pos-
sible to implement the specification for a Java virtual machine that
would allow JavaBeans to be usable in any container that supports
the specification, Delphi being just one of them.

Conclusion
We have to ask: When will Kylix be available?
Michael: We aren’t yet ready to announce release dates, but I can
say that it will be after BorCon.
xv THE DISH O
What message concerning Kylix and Delphi do you want the develop-
ers attending the Inprise/Borland Conference in San Diego to share
when they return to their companies?
Michael: That real rapid application development no longer means
being tied to a single platform, or relying on a run-time interpreter,
or virtual machine. Native rapid cross-platform development is here,
and it is Delphi.

Questions for this interview were contributed by Delphi Informant
Magazine’s Editor-in-Chief, Jerry Coffey; Delphi Informant Mag-
azine’s Technical Editor, Robert Vivrette; Delphi Informant Mag-
azine’s Contributing Editors, Bill Todd and Cary Jensen, Ph.D.;
and Richard Porter.

This article describes features of software products that are in devel-
opment and are subject to change without notice. Description of
such features here is speculative and does not constitute a binding
contract or commitment of service.

Michael Swindell is a Director of Product Manage-
ment at Inprise/Borland. He joined Inprise/Borland
in 1997 working on C++Builder versions 3 through
5, and is currently directing the Kylix Project: Delphi
and C++Builder for Linux. Previously, Michael was
Senior Product Manager for raster imaging systems
at Imation Software Publishing, where he special-
ized in PostScript processing and color printing sys-
tems. As Director of Software Development at RIPit
Technologies, Michael managed the research and
development of server-based digital pre-press imag-
ing systems, and authored such technologies as
the Enhanced Rational Tangent Screening algorithm
(ERT), and the OnTarget halftone linearization system.
When Michael isn’t developing products, or speak-
ing to developers, he is listening to CDs and MP3s,
or surfing at Pleasure Point in Santa Cruz, California.

Chuck Jazdzewski was one of the two original
developers of Borland Delphi, and is Chief Archi-
tect of Delphi and Kylix. He has worked on several
products for Inprise, including C++Builder, JBuilder,
Borland Pascal, and Turbo Pascal. Chuck joined
Inprise/Borland right out of college and has worked
at the company for 13 years. He lives with his wife
Kristin and three children, Jonathan, Joseph, and
Rebekah, in Soquel, California.
N KYLIX August 2000

	Table of Contents
	Delphi Tools
	Dart Announces PowerTCP WebServer Tool
	Digital Metaphors Releases ReportBuilder 5
	B&P Releases APrintDirect 3.6
	HyperAct Announces WebApp 2.5
	Pitron Systems Announces PSWebDBGrid 1.0
	M-Tech Releases Version 4.2 of P-Synch
	Extended Systems Offers XTNDConnect RPM
	Developer Express Announces ExpressPrinting System
	XML Software Releases InterAccess 1.1

	Delphi News
	Troll Tech and Inprise/Borland Collaborate on Linux GUI
	Bank of America Selects Inprise Application Server for E-business Platform
	Inprise/Borland Releases New MIDAS XML Server
	Inprise/Borland Announces First Quarter 2000 Results
	Inprise/Borland and Corel Terminate Proposed Merger

	Distributed Delphi
	Building the MIDAS Server
	Building the COM Client
	Building the COM Server
	Calling Back to the COM Client
	Conclusion

	OP Basics
	The Ancestor
	The Generic List Display Screen
	The Generic Edit Screen
	The Generic Print Screen
	Conclusion

	On Language
	Interpretive Evaluation
	Compiled Evaluation
	Features of the Advanced Calculator
	Calculations with Series
	Calculations Using a Formula
	Begin Listing One — Interpretive parsing and evaluation
	Begin Listing Two — Parse and create postfix notation sequence

	Conclusion
	References

	Greater Delphi
	WAP-WML for an HTTP-HTML World
	The Path to Delphi WAP-WML Enlightenment
	The Code
	Begin Listing One — The Main procedure

	Conclusion
	References

	In Development
	Dependency Tracking Managing State,Not Process
	The Goals of Dependency Tracking
	The Application of Dependency Tracking
	The Rules of Dependency Tracking
	The Implementation of Dependency Tracking
	Conclusion
	Glossary

	The API Calls
	An Open Dialog
	Calling the Open Dialog Box
	The New Component
	Conclusion

	New &Used
	Wise InstallMaster 8.0
	Choosing What Will Be Installed
	Database and Run-time Engines
	Operating System Setup
	Will Your Application Run Here?
	Controlling What the User Sees
	Providing Security
	Distribution Options
	Other Ways to Create an Installation
	Conclusion

	TextFile
	Delphi in a Nutshell

	Best Practices
	Standards and Conventions

	File |New
	Open Source and the Delphi Community
	The Nature and Development of Open Source
	Of Licenses,Left and Right
	Open Source in Delphi and Commercial Software
	Delphree:The Delphi Connection

	Special Supplement
	The Dish on Kylix The Dish on Kylix
	SYMPOSIUM
	At the Threshold

	The Dish on Table of Contents - Kylix An Early Look at Delphi for Linux
	Is Linux Ready for Delphi? Fears,Misconceptions,and Misplaced Euphoria
	Why Linux?Why not BeOS,or Mac OS10,or Solaris,or <your pet OS here>?
	Why would anyone pay money for development tools for a “f r ee sof t war e ” like Linux?
	Have you actually evaluated the benefits of Linux?
	Microsof t has kept Borland/Inprise alive.Microsof t gave Borland/- Inprise millions.
	Borland RAD tools for Linux!This is so cool!It ’ll destroy Windows! Linux rules the world!
	There are so many Linux flavors,e.g.Red Hat, Corel,Slackware, SUSE, TurboLinux,Bob's Linux, etc. Testing our applications wil
	Who manages Linux? How are any major architectural changes going to be implemented over the next five years? Who do I write t
	Microsof t copies ideas from everybody. Linux is built on true innovation.
	Linux has done wonders for our communit y,but let us not run and jump unt il Linux has actually proven it self.
	Borland is a Windows shop. How are you going to sur vive a platform shift to Linux?
	A lot of the Delphi team is of f doing Linux st uf f now.Has Borland abandoned Delphi 6/C++Builder 6 development for Windows?
	Why?

	Cross-platform Controls From Windows to Linux,and Back
	visualCLX
	Don ’t Want You Back
	What Does It All Mean?
	Larger Than Life
	Begin Listing One — QCalc..pas

	Conclusion

	Some Q &A with R&D An Interview with Borland ’s Michael Swindell and Chuck Jazdzewski
	What will Kylix be named when i t ’s r eleased?ous choice. “Delphi for Linux ” seems t he obvious choice.
	Will there be separate edit ions of Kylix,e.g.Standard,Enterprise,etc.?
	How will Kylix be priced?Will Kylix be open source?
	Delphi is famous for being developed in Delphi.Will this st ill be the case for Kylix?
	What has been the biggest challenge in developing Kylix?What,if any thing,t urned out to be unexpectedly easy?
	Users
	You ’ve been surveying the Delphi community, which is ostensibly a Windows communit y. How many of them have Unix/Linux exper
	Do you ant icipate at tracting new customers to Kylix,or do you expect most to come from your Delphi/C++Builder base?
	Is Kylix part icularly well-suited for corporate developers, independent developers, or third-party developers?
	Are there part icular t ypes of applications for which Kylix will be especially well-suited?

	Database
	Which databases do you plan to support with version 1?Do you plan to ship a database with it?
	How will the connectivity to different databases be handled? Will there be a middleware layer that fulfills the same functio
	Will the database component architecture resemble the T Table, TQuer y ,TStoredProc architecture? Or will it be more MIDAS-li

	Inter face
	Does Kylix use an exist ing Linux GUI, such as the KDE Desktop Environment (KDE), or GNU Network Object Model Environment (GN
	Which Linux inter faces (e.g.GNOME,KDE,etc.)will Kylix suppor t?
	Is Kylix going to suppor t Linux t hemes?For example,if I develop under GNOME and ship my application to someone running KDE,

	Windows-Linux Compatibilit y
	Will I be able to move my pr oject s back and for t h bet ween Delphi and Kylix?
	Will the Delphi and Kylix IDEs be the same?
	What level of int er oper abili t y is planned bet ween t he Windows and Linux versions? For example, are the DFMs compatible
	Will current Delphi applications have to be substant ially rewrit ten to compile and run on Linux via Kylix?
	Will the CLX have the same class structure as the VCL?
	The plan was to create a version of Delphi for Linux that was com- patible at the VCL level,with some component s available f
	Aside f rom using the Windows API and Windows-specific calls (e.g. DirectX),is there going to be any cross-platform programmi
	How about ker nel and libr ar y compat ibili t y? If I create my application on a 2.2.10 kernel, supplied by Red Hat, will it
	The operating system changes,but the chip remains the same.Does this mean that the assembler code in Delphi —and in Delphi ap

	Linux
	Which flavor s of Linux will Kylix suppor t in ver sion 1. Which one do you use?
	Once Linux is supported,it doesn ’t seem a long step to Unix.If Kylix takes off, will we see a Delphi for Unix?
	Many Linux developers are accustomed to get t ing their sof t ware for free. Are there plans to make a free version of Kylix
	Are there part icular features of Linux that are proving to be espe- cially helpful in the development of Kylix?For example,

	Miscellaneous
	How do the size of the executables compare to ones writ ten with standard Linux compilers, e.g. the GCC?
	How do size and per formance measure up to a Delphi application on a similarly equipped Windows box?
	Is the CLX thread-safe?
	How ’s access to other libraries?Can I use third-part y libraries,for example,to make enhancement s to or take advantage of exist ing sof t ware like the GNOME/KDE configuration sof t ware,or StarOffice?
	Are OpenGL wrappers included out-of-the-box?
	What support is included for using multiple X terminals in the same program? How easy will it be to use?
	Is there going to be a set of component s comparable to the Internet and FastNet components in Delphi 5?
	Have you considered adding limited JavaBean support,say,the ability to import them?

	Conclusion
	We have to ask: When will Kylix be available?
	What message concerning Kylix and Delphi do you want the develop- ers at tending the Inprise/Borland Conference in San Diego

